摆了两周,突然觉得不能一直再颓废下去了,应该利用好时间,并且上个月就读了一些经典的图像分割论文比如FCN、UNet和Mask R-CNN,但仅仅只是读了论文并且大概了解了图像分割是在做什么任务的,于是今天就拉动手复现一下,因为只有代码运行起来了,才能进行接下来的代码阅读以及其他改进迁移等后续工作。
本文着重在于代码的复现,其他相关知识会涉及得较少,需要读者自行了解。
看完这篇文章,您将收获一个完整的图像分割项目(一个通用的图像分割数据集及一份可正常执行的代码)。
图来自FCN,Jonathan Long,Evan Shelhamer,Trevor Darrell CVPR2015
图像分割可以大致为实例分割、语义分割,其中语义分割(Semantic Segmentation)是对图像中每一个像素点进行分类,确定每个点的类别(如属于背景、人或车等),从而进行区域划分。目前,语义分割已经被广泛应用于自动驾驶、无人机落点判定等场景中。
FCN全程Fully Convolutional Networks,最早发表于CVPR2015,原论文链接如下:
FCN论文链接:https://arxiv.org/abs/1411.4038
正如其名称全卷积网络,实则是将早年的网络比如VGG的全连接层代替为卷积层,这样做的目的是让模型可以输入不同尺寸的图像,因为全连接层一旦被创建输入输出维度都是固定的,追根溯源就是输入图片的尺寸固定,并且语义分割是像素级别操作,替换为卷积层也更加合理(卷积操作就是像素级别,这些都是后话了)。
更具体的学习视频可以跳转到b站FCN网络结构详解(语义分割)
进入FCN论文链接,点击Code&Data再进入Community Code跳转到paperwithcode网站。
很神奇地是会发现有两个FCN的检索链接,本文所需要的pytorch项目代码在红框这个链接中
Star最高的就是本文所需项目,这个大佬还有自己的个人网页,而且号称是FCN最简单的实现,我可以作证此言不虚,的确是众多代码中最简洁明朗的。
CityScapes数据集官方下载链接:CityScapes Download
然而下载这个数据集需要注册账号,而且需要的是教育邮箱,可能是按照是否带edu.cn域名判断的吧,本人使用学校邮箱成功注册下载了数据集。读者若有不便可以上网其他途径获取或淘宝买个账号。
只需下载前3个数据集即可,gtFine_trainvaltest是精确标注(最主要最关键部分),gtCoarse是粗略标注,leftimg8bit_trainvaltest是原图。虽然模型训练的时候只需要用到gtFine但是因为接下来还需要预处理数据集,因此要将三个数据集下载好,才能执行官方给的预处理代码。
重构数据集
将三个zip解压然后新建一个文件夹命名为CityScapes,然后将三个解压文件里的内容按上图目录放置好,为数据集预处理做准备。
这里需要先下载官方的脚本:cityscapesScripts
接下来对其中的一些地方进行修改,最重要的两个文件为项目下cityscapesscripts\helpers\labels.py和cityscapesscripts\preparation\createTrainIdLabelImgs.py。
蓝色框为原本的代码,直接注释掉添加红框处代码,即指定自己本地的数据集目录,比如我就将CityScapes放到了E盘的dataset目录下。
然后是在label.py文件里按照训练的需要更改trainid,255为不被模型所需要的id,因为FCN中为19类+背景板,所以为20类,刚好符合所以不需要更改label文件中任何内容。
最后运行createTrainIdLabelImgs.py,如果报错的话大概率是因为缺少上图蓝框所示的库,将其直接注释掉就可以了。
之所以需要修改是因为原本的代码里面数据预处理那块太慢了,Cityscapes_utils.py要将trainId写入npy文件,运行速度极慢,这也是先前用官方预处理脚本cityscapesScripts来预处理的原因,预处理的目的其实也只是生成TrainIds的mask图片,和labelIds的png图片是同理的,只是每个像素所对应类别按照label.py里面的label表进行改变。
其实pytorch官方有给出加载CityScapes的数据集代码,但其直接拿来用并不能满足我们要求,所以需要修改一下,就原项目代码的Cityscapes_loader.py和torchvision.datasets.Cityscapes的代码结合,得到如下可执行代码。读者只需用其替换train.py文件即可。
# -*- coding: utf-8 -*-
# Author: Reganzhxfrom __future__ import print_functionimport random
from tqdm import tqdm # 由于训练缓慢,添加进度条方便观察
import imageio
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torch.utils.data import DataLoaderfrom fcn import VGGNet, FCN32s, FCN16s, FCN8s, FCNs
# from Cityscapes_loader import CityScapesDataset
from CamVid_loader import CamVidDataset
from torchvision.datasets import Cityscapes
from matplotlib import pyplot as plt
import numpy as np
import time
import sys
import os
from PIL import Imageclass CityScapesDataset(Cityscapes):def __init__(self, root: str,split: str = "train",mode: str = "fine",target_type="semantic",transform=None,target_transform=None,transforms=None):super(CityScapesDataset, self).__init__(root,split,mode,target_type,transform,target_transform,transforms)self.means = np.array([103.939, 116.779, 123.68]) / 255.self.n_class = 20self.new_h = 512 # 数据集图片过大,需要剪裁self.new_w = 1024def __getitem__(self, index):img = imageio.imread(self.images[index], pilmode='RGB')targets = []for i, t in enumerate(self.target_type):if t == "polygon":target = self._load_json(self.targets[index][i])else:target = imageio.imread(self.targets[index][i])targets.append(target)target = tuple(targets) if len(targets) > 1 else targets[0] # 针对多目标 可不关注h, w, _ = img.shapetop = random.randint(0, h - self.new_h)left = random.randint(0, w - self.new_w)img = img[top:top + self.new_h, left:left + self.new_w]label = target[top:top + self.new_h, left:left + self.new_w]# reduce meanimg = img[:, :, ::-1] # switch to BGRimg = np.transpose(img, (2, 0, 1)) / 255.img[0] -= self.means[0]img[1] -= self.means[1]img[2] -= self.means[2]# convert to tensorimg = torch.from_numpy(img.copy()).float()label = torch.from_numpy(label.copy()).long()# create one-hot encodingh, w = label.size()target = torch.zeros(self.n_class, h, w)for c in range(self.n_class):target[c][label == c] = 1sample = {'X': img, 'Y': target, 'l': label}return sampledef __len__(self) -> int:return len(self.images)def _get_target_suffix(self, mode: str, target_type: str) -> str:if target_type == "instance":return f"{mode}_instanceIds.png"elif target_type == "semantic": # 让其指向预处理好的target图片return f"{mode}_labelTrainIds.png"elif target_type == "color":return f"{mode}_color.png"else:return f"{mode}_polygons.json"n_class = 20
batch_size = 2 # 根据测试,1batch需要2G显存,请按实际设置
epochs = 500
lr = 1e-4
momentum = 0
w_decay = 1e-5
step_size = 50
gamma = 0.5
configs = "FCNs-BCEWithLogits_batch{}_epoch{}_RMSprop_scheduler-step{}-gamma{}_lr{}_momentum{}_w_decay{}".format(batch_size, epochs, step_size, gamma, lr, momentum, w_decay)
print("Configs:", configs)# create dir for model
model_dir = "models"
if not os.path.exists(model_dir):os.makedirs(model_dir)
model_path = os.path.join(model_dir, configs)use_gpu = torch.cuda.is_available()
num_gpu = list(range(torch.cuda.device_count()))# 自行更改root
train_data = CityScapesDataset(root='E:/datasets/CityScapes', split='train', mode='fine',target_type='semantic')train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)val_data = CityScapesDataset(root='E:/datasets/CityScapes', split='val', mode='fine',target_type='semantic')val_loader = DataLoader(val_data, batch_size=1)vgg_model = VGGNet(requires_grad=True, remove_fc=True)
fcn_model = FCNs(pretrained_net=vgg_model, n_class=n_class)if use_gpu:ts = time.time()vgg_model = vgg_model.cuda()fcn_model = fcn_model.cuda()fcn_model = nn.DataParallel(fcn_model, device_ids=num_gpu)print("Finish cuda loading, time elapsed {}".format(time.time() - ts))criterion = nn.BCEWithLogitsLoss()
optimizer = optim.RMSprop(fcn_model.parameters(), lr=lr, momentum=momentum, weight_decay=w_decay)
scheduler = lr_scheduler.StepLR(optimizer, step_size=step_size,gamma=gamma) # decay LR by a factor of 0.5 every 30 epochs# create dir for score
score_dir = os.path.join("scores", configs)
if not os.path.exists(score_dir):os.makedirs(score_dir)
IU_scores = np.zeros((epochs, n_class))
pixel_scores = np.zeros(epochs)def train():for epoch in range(epochs):scheduler.step()ts = time.time()for iter, batch in enumerate(tqdm(train_loader)):optimizer.zero_grad()if use_gpu:inputs = Variable(batch['X'].cuda())labels = Variable(batch['Y'].cuda())else:inputs, labels = Variable(batch['X']), Variable(batch['Y'])outputs = fcn_model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()if iter % 10 == 0:print("epoch{}, iter{}, loss: {}".format(epoch, iter, loss.item()))print("Finish epoch {}, time elapsed {}".format(epoch, time.time() - ts))torch.save(fcn_model, model_path)val(epoch)def val(epoch):fcn_model.eval()total_ious = []pixel_accs = []for iter, batch in enumerate(val_loader):if use_gpu:inputs = Variable(batch['X'].cuda())else:inputs = Variable(batch['X'])output = fcn_model(inputs)output = output.data.cpu().numpy()N, _, h, w = output.shapepred = output.transpose(0, 2, 3, 1).reshape(-1, n_class).argmax(axis=1).reshape(N, h, w)target = batch['l'].cpu().numpy().reshape(N, h, w)for p, t in zip(pred, target):total_ious.append(iou(p, t))pixel_accs.append(pixel_acc(p, t))# Calculate average IoUtotal_ious = np.array(total_ious).T # n_class * val_lenious = np.nanmean(total_ious, axis=1)pixel_accs = np.array(pixel_accs).mean()print("epoch{}, pix_acc: {}, meanIoU: {}, IoUs: {}".format(epoch, pixel_accs, np.nanmean(ious), ious))IU_scores[epoch] = iousnp.save(os.path.join(score_dir, "meanIU"), IU_scores)pixel_scores[epoch] = pixel_accsnp.save(os.path.join(score_dir, "meanPixel"), pixel_scores)# borrow functions and modify it from https://github.com/Kaixhin/FCN-semantic-segmentation/blob/master/main.py
# Calculates class intersections over unions
def iou(pred, target):ious = []for cls in range(n_class):pred_inds = pred == clstarget_inds = target == clsintersection = pred_inds[target_inds].sum()union = pred_inds.sum() + target_inds.sum() - intersectionif union == 0:ious.append(float('nan')) # if there is no ground truth, do not include in evaluationelse:ious.append(float(intersection) / max(union, 1))# print("cls", cls, pred_inds.sum(), target_inds.sum(), intersection, float(intersection) / max(union, 1))return iousdef pixel_acc(pred, target):correct = (pred == target).sum()total = (target == target).sum()return correct / totalif __name__ == "__main__":val(0) # show the accuracy before trainingtrain()
分别在自己办公电脑1030显卡(显存4G)和3060显卡(显存12G)上测试,根据两台电脑运行上看每增加1batch就需要消耗2G显存,因为3060上最大只能将batch size设置为6。3060显卡上1个epoch需要8min,也就是说训练完500epoch需要三天时间,可见图像分割真的是极其消耗资源。而1030上1代竟然耗时2h20min,所以按照时间来看首选设备是3090,这样才可能在一天之内进行完一次完整500epoch训练。
第1轮迭代后pixel accuracy就有75%,目前到第25轮pixel accuracy达到85%,随着epoch数增加,pixel acc也越来越高,希望其最终能突破90%,原论文中可是达到96%pixel准确率。
希望您读到这里能有所收获,本文所参考资料也在文末给出,大家可以查阅获取更多知识细节,后续还将不断完善本文内容,敬请期待……
https://bbs.huaweicloud.com/blogs/306716
https://developer.aliyun.com/article/797607
https://www.cnblogs.com/dotman/p/cityscapes_dataset_tips.html
https://zhuanlan.zhihu.com/p/147195575
https://codeantenna.com/a/uD5sJceaS1
https://blog.csdn.net/zz2230633069/article/details/84591532
https://www.zhihu.com/question/276325769/answer/2418207657
https://blog.csdn.net/zz2230633069/article/details/84668984
https://blog.csdn.net/yumaomi/article/details/124847721
上一篇: 学生种绿豆的观察日记