数据结构专题 -- 哈希思想详解
创始人
2024-05-13 01:52:08
0

代码会存放在:

https://github.com/sjmshsh/Data-Struct-HandWriting

通过阅读本篇文章,你可以学到:

  • 哈希思想及其本质
  • 使用C++实现简易的哈希表
  • 哈希思想的应用
    • 位图
    • 布隆过滤器
    • 哈希切分
    • 极致升华,海量数据处理面试题
  • 拓展 – 一致性哈希算法
  • 用Golang实现简易的一致性哈希算法

哈希的本质我认为是以空间换取时间。牺牲空间以换取时间复杂度为O(1),哈希的用途很广泛,例如Redis,C++的STL,Java的集合,Go的map等等都用到了哈希,他们的原理虽然略有区别,但是基本上相同,所以我们只要理解了这个思想,就可以以分钟为单位的去学习其他地方的哈希。

哈希概念

其实增删查改(CRUD)一直是一个很大的话题,为何要增删查改,增删查改本质上是一种管理方式,就好比操作系统中,操作系统是一个管理员,管理员需要先描述再组织,描述就是把相关的数据抽象成一个结构体,或者说类对象。组织就是对这些结构体或者类对象使用某种方式管理起来。数据的管理方式有很多,常见的数据结构有:链表,栈,堆,红黑树,AVL树,B/B+树等等,当然,还有我们的哈希。

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(logN),搜索的效率取决

于搜索过程中元素的比较次数。

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函数hashFunc使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

所以哈希的本质其实是简历映射关系的过程,映射的建立是需要花费空间的,但是它带来的O(1)的时间复杂度。

插入元素

根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放。

搜索元素

对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功。

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)。

现在可能还是很迷,但是举一个例子就好了。

例如:数据集合{1,7,6,4,5,9};

哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。

在这里插入图片描述

好,那么我们现在再次插入44这个元素,可以发现,我的位置已经被占了,这就是所谓的哈希冲突问题。

哈希冲突

对不同的关键字可能得到同一散列地址,即[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2mcgJXBA-1673943600773)(null)],而{[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ChcppzIi-1673943601177)(null)],这种现象称为冲突(英语:Collision)。

– 来自《维基百科》

  1. 哈希冲突是否可以避免?

    答:哈希冲突是不可能避免的,只能尽量的减小哈希冲突的概率,因为在算哈希值的时候,我们使用某种算法进行计算,难免会遇到计算的哈希值是相同的情况。

  2. 哈希冲突会带来什么影响?

    答:当冲突到达一定的程度的时候,哈希表的效率会显著的降低,具体原因后续再讲。

  3. 如何尽可能的规避哈希冲突?

    答:引起哈希冲突的一个很重要的原因就是:哈希函数的设计不合理。一个优秀的哈希函数应该满足以下几个条件:

    • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
    • 哈希函数计算出来的地址能均匀分布在整个空间中
    • 哈希函数应该比较简单,如果很复杂的话,那么计算成本也是很高的

因此我们这个时候来介绍一下哈希函数。

哈希函数

这里跳过,可以去网上查一下,数学问题。我们到时候模拟实现采用的是除留余数法。

除留余数法–(常用)

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址哈希函数设计的越精妙,产生哈希冲突的可能性就比较低,但是无法避免,那么我们如果真的遇到了哈希冲突,应该怎么解决呢?

哈希冲突解决

解决哈希冲突的两种常见方法是:闭散列开散列

闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那

么可以把key存放到冲突位置中的下一个空位置中去。那如何寻找下一个空位置呢?

线性探测

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位为止。

  • 插入

    • 通过哈希函数获取待插入元素在哈希表中的位置
    • 如何该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置插入新元素。

在这里插入图片描述

  • 删除

    采用闭散列处理哈希冲突时,不能随便物理删除哈希表中的已有元素,若直接删除元素会影响其他元素的搜索。例如删除了元素4,那么我的44其实就找不到了。因为我们应该使用伪删除法来删除一个元素。

    	enum Status{EXIST, // 位置已经有元素EMPTY, // 位置为空DELETE // 删除};
    

线性探测的实现

先给出几个需要注意的点:

  • 注意我的取模不能模容量,要模大小

    	size_t i = kv.first % _tables.size();// 不能取模capacity// size_t i = kv.first % _tables.capacity();
    

    原因是如果你模容量的话可能会出现内存访问越界的问题。

  • 思考哈希表什么情况下进行扩容?如何扩容?

    首先回答一个问题,为什么要进行扩容?原因很简答

    1. 数据量太多了,哈希表放不下了
    2. 你可以想象一下,在同一片空间下,数据越来越多,是不是发生哈希冲突的概率会越来越大,那么再向一下线性探测的过程,如果哈希冲突很严重的话,就相当于遍历了,哈希表效率严重下降。

    那么什么时候进行扩容呢?

    1. 散列表的载荷因子定义为:α = 填入表中的元素个数 / 散列表的长。度[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传α是散列表装满程度的标志因子。由于表长是定值,[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传α与“填入表中的元素个数”成正比,所以,α越大,表明填入表中的元素越多,产生冲突的可能性就越大;反之,α越小,标明填入表中的元素越少,产生冲突的可能性就越小。实际上,散列表的平均查找长度是载荷因子[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传α的函数,只是不同处理冲突的方法有不同的函数。

      对于开放定址法,荷载因子是特别重要因素,应严格限制在0.7-0.8以下。超过0.8,查表时的CPU缓存不命中(cache missing)按照指数曲线上升。因此,一些采用开放定址法的hash库,如Java的系统库限制了荷载因子为0.75,超过此值将resize散列表。

#pragma once
#include 
#include using namespace std;template
struct Hash
{size_t operator() (const K& key){return key;}
};// 如果K是stribg类型会走这个特化版本
template<>
struct Hash
{size_t operator() (const string& s){// BKDRsize_t value = 0;for (auto ch : s){value *= 31;value += ch;}return value;}
};namespace CloseHash
{enum Status{EXIST,EMPTY,DELETE};templatestruct HashData{pair _kv;Status _status = EMPTY;};template>class HashTable{public:bool Erase(const K& key){HashData* ret = Find(key);if (ret == nullptr){// 没有找到说明没有这个数据,当然是不能删除的return false;}else{--_n;ret->_status = DELETE;return true;}}HashData* Find(const K& key){if (_tables.size() == 0){return nullptr;}HashFunc hf;size_t start = hf(key) % _tables.size();size_t i = 0;size_t index = start;// 线性探测 or 二次探测while (_tables[index]._status != EMPTY){if (_tables[index]._kv.first == key && _tables[index]._status == EXIST){return &_tables[index];}i++;index = start + i;index %= _tables.size();}return nullptr;}bool Insert(const pair& kv){HashData* ret = Find(kv.first);if (ret){return false;}// 负载因子到0.7// 负载因子越小,冲突概率就越小,效率越高,空间浪费越多if (_tables.size() == 0 || _n * 10 / _tables.size() >= 7){// 扩容size_t newSize = _tables.size() == 0 ? 10 : _tables.size() * 2;//vector> newTables;//newTables.resize(newSize); 遍历原表,把原表中的数据重新按newSize映射到新表//for (size_t i = 0; i < _tables.size(); i++)//{//	// //} 交换内存并把以前的内存销毁//_tables.swap(newTables);HashTable newHT;newHT._tables.resize(newSize);for (size_t i = 0; i < _tables.size(); i++){if (_tables[i]._status == EXIST){newHT.Insert(_tables[i]._kv);}}_tables.swap(newHT._tables);}HashFunc hf;size_t start = hf(kv.first) % _tables.size();size_t i = 0;size_t index = start;// 不能取模capacity// size_t i = kv.first % _tables.capacity();// 线性探测while (_tables[index]._status == EXIST){i++;index = start + i * i;index %= _tables.size();}_tables[index]._kv = kv;_tables[index]._status = EXIST;++_n;return true;}private:vector> _tables;size_t _n; // 有效数据的个数};struct Date{public:int a = 1;};struct HashDate{size_t operator() (const Date* d){// ...}};void TestHashTable1(){HashTable ht;ht.Insert(make_pair("lxy", 12));cout << ht.Find("lxy") << endl;ht.Erase("lxy");cout << ht.Find("lxy") << endl;// 当key是一个定义类型时,需要配置这个仿函数,将key转换成整形HashTable htds;}
}

线性探测其实缺点很大,一旦发生哈希冲突,所有的冲突连在一起,容易产生数据堆积。因此我们可以进行一次优化,使用二次探测

二次探测

线性探测是每次遇到重复的就找下一个位置,而二次探测就是遇到重复的话,就跳过一段距离,避免数据的堆积。

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就

是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为: Hi = (H0 + i^2) % m。其中:i = 1,2,3…,是通过散列函数Hash(x)对元素的关键码key进行计算得到的位置,m是表的大小。如果要插入44,产生冲突,使用解决后的情况为:

在这里插入图片描述

但是二次探测也有很大的缺点,就是每次跳跃平方的话,在负载因子到达一定程度的时候,你可能跳几万次都跳不到空位,因此如果是二次探测的话要严格控制负载因子。

研究表明甚至要到达0.5。对空间的浪费是很大的。于是我们有了一个更好的解决方案,也就是开散列。

顺便放一个代码,我们只需要改一个地方就可以了,就是扩容的时候控制一下即可。

在这里插入图片描述

开散列

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

在这里插入图片描述

这个位置我们可以称作是哈希桶,每一个哈希桶里面存放的是发生了哈希冲突的元素。

极端场景是一个哈希桶内冲突的元素太多了,链表太长,因此,当一个桶长度超过一定的值之后,由链表转换为红黑树,代码实现就链表吧,红黑树太难了。

关于开散列的负载因子,实际上是1,也就是每一次插入的时候都会发生哈希冲突的时候再扩容比较好。因为它不会像闭散列一样发生堆积。

扩容的代价是很大的,所以能少扩容,负载因子就尽量大一点,要做权衡。如果数据量大到离谱,例如一个亿,每次扩容都可能会造成一定的性能抖动

那么关于字符串放入哈希表,使用字符串哈希算法就可以了,在网上搜几个就可以。然后C++使用仿函数实现即可。

还有一个需要注意的点就是:研究表明,我们每次最好模一个素数,这样可以减小哈希冲突的概率

因此使用素数表的方法来实现,STL也是这么做的。

代码实现

namespace LinkHash
{templatestruct HashNode{pair _kv;HashNode* _next;HashNode(const pair& kv):_kv(kv),_next(nullptr){}};template>class HashTable{typedef HashNode Node;public:bool Erase(const K& key){if (_tables.empty()){return false;}HashFunc hf;size_t index = hf(key) % _tables.size();Node* cur = _tables[index];Node* prev = nullptr;while (cur){if (cur->_kv.first == key){if (prev == nullptr){// 头删_tables[index] = cur->_next;}else{// 中间的地方进行删除prev->_next = cur->_next;}--_n;delete cur;return true;}else{prev = cur;}}}size_t GetNextPrime(size_t num){static const unsigned long __stl_prime_list[28] = {53, 97, 193, 389, 769,1543, 3079, 6151, 12289, 24593,49157, 98317, 196613, 393241, 786433,1572869, 3145739, 6291469, 12582917, 25165843,50331653, 100663319, 201326611, 402653189, 805306457,1610612741, 3221225473, 4294967291};for (size_t i = 0; i < 28; i++){if (__stl_prime_list[i] > num){return __stl_prime_list[i];}}return __stl_prime_list[27];}Node* Find(const K& key){if (_tables.empty()){return nullptr;}HashFunc hf;size_t index = hf(key) % _tables.size();Node* cur = _tables[index];while (cur){if (cur->_kv.first == key){return cur;}else{cur = cur->_next;}}return nullptr;}bool Insert(const pair& kv){Node* ret = Find(kv.first);if (ret){return false;}// 负载因子 == 1 时扩容if (_n == _tables.size()){size_t newSize = GetNextPrime(_tables.size());vector newTables;newTables.resize(newSize);for (size_t i = 0; i < _tables.size(); i++){HashFunc hf;Node* cur = _tables[i];while (cur){Node* next = cur->_next;size_t index = hf(cur->_kv.first) % newTables.size();// 头插cur->_next = newTables[index];cur = next;}_tables[i] = nullptr;}newTables.swap(_tables);}HashFunc hf;size_t index = hf(kv.first) % _tables.size();Node* newnode = new Node(kv);// 头插newnode->_next = _tables[index];_tables[index] = newnode;++_n;return true;}private://struct Data//{//	forward_list _list;//	set _rbtree;//	size_t _len;//};// 这里就不考虑极端场景了vector _tables;size_t _n; // 有效数据的个数};void TestHashTable(){int a[] = { 4, 24, 14, 7,37,37,57,67,34,14,54 };HashTable ht;for (auto e : a){ht.Insert(make_pair(e, e));}}
}

哈希的应用

位图

海量数据处理面试题1

我们从一道面试题来引入位图:

给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数

中。【腾讯】

  1. 首先分析题目,我的脑子里面的第一想法是遍历,时间复杂度O(N),然后进行优化,先排序,时间复杂度O(NlogN),然后利用二分查找:logN。d
  2. 仔细一想,哎,40亿个数字,内存放不下哎,只能用其他的方式。

这里可以使用位图

位图就是用每一个比特位来存放某种状态,适用于海量数据,数据无重复的场景,通常是用来判断数据是否存在的。

#pragma once#include using namespace std;namespace bit
{templateclass bit_set{public:bit_set(){_bits.resize(N / 8 + 1);}// 设置为1void set(size_t x){// 这个i算的是它在第几个char里面size_t i = x / 8;// 这个j算的是它是第几个位size_t j = x % 8;_bits[i] |= (1 << j);}// 清理为0void reset(size_t x){size_t i = x / 8;size_t j = x % 8; _bits[i] &= (~(1 << j));}// 探测这个位是否是1bool test(size_t x){size_t i = x / 8;size_t j = x % 8;return _bits[i] & (1 << j);}private:vector _bits;// vector _bits;};void test_bit_set(){bit_set<0xffffffff> bs;}
}

海量数据处理面试题2

给定100亿个整数,设计算法找到只出现一次的整数。

首先分析一下题目:

数字出现的频率可以分为三种情况:

  1. 出现0次
  2. 出现1次
  3. 出现2次以及以上

思路是:改造位图结构,以前是一个比特位标识一个值,现在改成两个比特位标识一个值。

定义两个比特位图:

bit_set _bs1;
bit_set _bs2;

这两个比特位图可以标识以下几种状态:

  • 00 数字出现了0次
  • 01 数字出现了1次
  • 10 数字出现了2次
  • 11 数字出现了3次

这样用两个比特位图就可以找到只出现一次的整数了。

#pragma once#include using namespace std;namespace bit
{templateclass bit_set{public:bit_set(){_bits.resize(N / 8 + 1);}// 设置为1void set(size_t x){// 这个i算的是它在第几个char里面size_t i = x / 8;// 这个j算的是它是第几个位size_t j = x % 8;_bits[i] |= (1 << j);}// 清理为0void reset(size_t x){size_t i = x / 8;size_t j = x % 8; _bits[i] &= (~(1 << j));}// 探测这个位是否是1bool test(size_t x){size_t i = x / 8;size_t j = x % 8;return _bits[i] & (1 << j);}private:vector _bits;// vector _bits;};templateclass TwoBitSet{public:void Set(size_t x){if (!_bs1.test(x) && !_bs2.test(x)) // 00 -> 01{_bs2.set(x);}else if (!_bs1.test(x) && _bs2.test(x)) // 01 -> 10{_bs1.set(x);_bs2.reset(x);}// 11 表示以及出现2次或者以上,不用处理			}void PrintOnceNum(){for (size_t i = 0; i < N; i++){if (!_bs1.test(i) && _bs2.test(i)) // 01{cout << i << endl;}}}private:// 然后设置的到bs1,一旦设置到bs1就已经说明完成了两次了bit_set _bs1;// 第一次设置到bs2bit_set _bs2;};void test_bit_set(){bit_set<0xffffffff> bs;}void TestTwoBitSet(){int a[] = { 99,0,4,50,33,44,2,5,99,0,50,99,50,2 };TwoBitSet<100> bs;for (auto e : a){bs.Set(e);}bs.PrintOnceNum();}
}

海量数据处理面试题3

给两个文件,分别有100亿个整数,我们只有1G内存,如何找到两个文件的交集?

思路1:把一个文件中的整数set到一个比特位图,读取第二个文件中的整数判断在不在位图。在就是交际,不在就不是交集。

这个思路看起来可以,但是实际上有一个很大的缺点:

int a1[] = {5, 30, 1, 99, 10};
int a2[] = {8, 10, 11, 9, 30, 10, 30};

8不在。10在。11不在。9不在。30在。10在。30在。最终结果。

10 30 10 30

还要加入到set进行去重。可行,但是还是不完美。

思路2:把文件set到一个位图,然后同时再set到另外一个位图,然后把两个位图相与,与完是1的就是交集。

海量数据处理面试题4

1个文件有100亿个int,1G内存,设计算法找到出现次数不能超过2次的所有整数。

两个位图即可,跟第二题差不多。

总结一下

  1. 快速查找某一个数据是否在一个集合中
  2. 排序
  3. 求两个集合的交集,并集
  4. 操作系统中磁盘块标记
  5. 。。。。

布隆过滤器

布隆过滤器的提出

我们在使用新闻客户端看新闻时,它会给我们不停地推荐新的内容,它每次推荐时要去重,去掉那些已经看

过的内容。问题来了,新闻客户端推荐系统如何实现推送去重的? 用服务器记录了用户看过的所有历史记

录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉那些已经存在的记录。 如何快速查

找呢?(Tips:推荐系统是可以有容错性的,所以这是一种解决方案)

  1. 用哈希表存储用户记录,缺点:浪费空间
  2. 用位图存储用户记录,缺点:不能处理哈希冲突
  3. 将哈希与位图结合,即布隆过滤器

特点

一句话解决:

本质上布隆过滤器是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”

布隆过滤器是可以过滤字符串的,首先我们使用字符串哈希算法把字符串转换成一个整数。

然后把这个整数映射到比特位图里面,其实这就是布隆过滤器。

如果比特位是0的话,那么说明这个位置对应的字符串一定不存在,如果比特位是1的话,代码可能存在,因为我们前面已经了解到了,哈希冲突是无法避免的。

既然无法避免,我们就需要去尽可能规避。

  1. 首先选择优秀的字符串哈希函数
  2. 其次,使用多个字符串哈希函数,同时进行映射,减少冲突的概率。
  3. 开的空间尽可能提升,负载因子尽可能小

在这里插入图片描述

例如这里是3个哈希函数的例子。

插入

算3个哈希插入。

查找

如果我找到了有一个比特位为0,那么我可以百分百说没有这个字符串。如果我找到了3个比特位都是1。那么这个值因为哈希冲突的原因可能不存在,就是这么一个道理。

删除

img

img

不能支持删除工作,因为在删除一个元素的时候,可能会影响其他元素。

比如:删除上图中"tencent"元素,如果直接将该元素所对应的二进制比特位置0,“baidu”元素也被删除了,

因为这两个元素在多个哈希函数计算出的比特位上刚好有重叠。

一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈

希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删

除操作。这相当于是引用计数吧。但是存在计数回绕问题。所以这个计数器取多少,是一个玄学问题。

代码实现

#pragma once#include 
#include 
#include struct BKDRHash
{size_t operator()(const string& s){// BKDRsize_t value = 0;for (auto ch : s){value *= 31;value += ch;}return value;}
};struct APHash
{size_t operator()(const string& s){size_t hash = 0;for (long i = 0; i < s.size(); i++){if ((i & 1) == 0){hash ^= ((hash << 7) ^ s[i] ^ (hash >> 3));}else{hash ^= (~((hash << 11) ^ s[i] ^ (hash >> 5)));}}return hash;}
};struct DJBHash
{size_t operator()(const string& s){size_t hash = 5381;for (auto ch : s){hash += (hash << 5) + ch;}return hash;}
};templateclass BloomFilter
{
public:void Set(const K& key){size_t len = X * N;size_t index1 = HashFunc1()(key) % len;size_t index2 = HashFunc2()(key) % len;size_t index3 = HashFunc3()(key) % len;/*	cout << index1 << endl;cout << index2 << endl;cout << index3 << endl<size_t len = X * N;cout << len << endl;size_t index1 = HashFunc1()(key) % len;if (_bs.test(index1) == false)return false;size_t index2 = HashFunc2()(key) % len;if (_bs.test(index2) == false)return false;size_t index3 = HashFunc3()(key) % len;if (_bs.test(index3) == false)return false;return true;  // 存在误判的}// 不支持删除,删除可能会影响其他值。void Reset(const K& key);
private:bitset _bs;
};void TestBloomFilter1()
{BloomFilter<100> bits;bits.Set("我的名字是李鑫阳");
}void TestBloomFilter2()
{/*BloomFilter<100> bf;bf.Set("张三");bf.Set("李四");bf.Set("牛魔王");bf.Set("红孩儿");bf.Set("eat");cout << bf.Test("张三") << endl;cout << bf.Test("李四") << endl;cout << bf.Test("牛魔王") << endl;cout << bf.Test("红孩儿") << endl;cout << bf.Test("孙悟空") << endl;cout << bf.Test("二郎神") << endl;cout << bf.Test("猪八戒") << endl;cout << bf.Test("ate") << endl;*/BloomFilter<100> bf;srand(time(0));size_t N = 100;std::vector v1;for (size_t i = 0; i < N; ++i){std::string url = "https://www.cnblogs.com/-clq/archive/2012/05/31/2528153.html";url += std::to_string(1234 + i);v1.push_back(url);}for (auto& str : v1){bf.Set(str);}for (auto& str : v1){cout << bf.Test(str) << endl;}cout << endl << endl;std::vector v2;for (size_t i = 0; i < N; ++i){std::string url = "https://www.cnblogs.com/-clq/archive/2012/05/31/2528153.html";url += std::to_string(6789 + i);v2.push_back(url);}size_t n2 = 0;for (auto& str : v2){if (bf.Test(str)){++n2;}}cout << "相似字符串误判率:" << (double)n2 / (double)N << endl;std::vector v3;for (size_t i = 0; i < N; ++i){// string url = "zhihu.com";//std::string url = "https://www.baidu.com/s?wd=ln2&rsv_spt=1&rsv_iqid=0xc1c7784f000040b1&issp=1&f=8&rsv_bp=1&rsv_idx=2&ie=utf-8&tn=baiduhome_pg&rsv_dl=tb&rsv_enter=1&rsv_sug3=8&rsv_sug1=7&rsv_sug7=100&rsv_sug2=0&rsv_btype=i&prefixsug=ln2&rsp=5&inputT=4576&rsv_sug4=5211";//std::string url = "https://zhidao.baidu.com/question/1945717405689377028.html?fr=iks&word=ln2&ie=gbk&dyTabStr=MCw0LDMsMiw2LDEsNSw3LDgsOQ==";std::string url = "https://www.cnblogs.com/-clq/archive/2012/01/31/2333247.html";url += std::to_string(rand());v3.push_back(url);}size_t n3 = 0;for (auto& str : v3){if (bf.Test(str)){++n3;}}cout << "不相似字符串误判率:" << (double)n3 / (double)N << endl;}

应用场景

  • 规避缓存击穿
  • 垃圾邮件判断
  • 。。。数据量大,节约空间,允许误判等场景

海量数据面试题5

给两个文件,分别有100亿个query,我们只有1G内存,如何找到两个文件交集?分别给出精确算法和近似算法

近似算法使用布隆过滤器即可。但是存在误判。

如果要给出精确算法的话,那么我们就得使用哈希切分思想了。

哈希切分

首先分析一下内存,1个G内存,1个query大概10字节。100亿个query大概100G左右。那么我们切分成200个小文件即可。

我们把两个文件命名为A号文件和B号文件。

首先在A号文件中读取query,i = BKRDHash(query) % 200。这个quert就进入Ai号小文件。B同理。

我们有结论:**A和B中相同的query一定进入编号相同的小文件。**这是由哈希的性质决定的,因为哈希一样的query计算出来的i是相同的。

所以我们查找的时候只需要把Ai号和Bi号文件加载进入内存,然后查找就可以了,相同的query必定是相同的字符串里面。

海量数据面试题6

给一个超过100G大小的log file, log中存着IP地址, 设计算法找到出现次数最多的IP地址? 与上题条件相同,如何找到top K的IP?如何直接用Linux系统命令实现?

答:使用哈希切分,这样相同IP的一定进入相同文件,然后使用小根堆来以O(logN)来统计出现次数最多的IP地址。

步骤如下:

  • Hash分桶法:
  • 将100G文件分成1000份,将每个IP地址映射到相应文件中:file_id = hash(ip) % 1000
  • 在每个文件中分别求出最高频的IP,再合并 Hash分桶法:
  • 使用Hash分桶法把数据分发到不同文件
  • 各个文件分别统计top K
  • 最后Top K汇总
  • Linux命令,假设top 10:sort log_file | uniq -c | sort -nr k1,1 | head -10

拓展:一致性哈希算法

我写过博客,可以看一看:

https://blog.csdn.net/qq_61039408/article/details/128697332?spm=1001.2014.3001.5501

相关内容

热门资讯

常用商务英语口语   商务英语是以适应职场生活的语言要求为目的,内容涉及到商务活动的方方面面。下面是小编收集的常用商务...
六年级上册英语第一单元练习题   一、根据要求写单词。  1.dry(反义词)__________________  2.writ...
复活节英文怎么说 复活节英文怎么说?复活节的英语翻译是什么?复活节:Easter;"Easter,anniversar...
2008年北京奥运会主题曲 2008年北京奥运会(第29届夏季奥林匹克运动会),2008年8月8日到2008年8月24日在中华人...
英语道歉信 英语道歉信15篇  在日常生活中,道歉信的使用频率越来越高,通过道歉信,我们可以更好地解释事情发生的...
六年级英语专题训练(连词成句... 六年级英语专题训练(连词成句30题)  1. have,playhouse,many,I,toy,i...
上班迟到情况说明英语   每个人都或多或少的迟到过那么几次,因为各种原因,可能生病,可能因为交通堵车,可能是因为天气冷,有...
小学英语教学论文 小学英语教学论文范文  引导语:英语教育一直都是每个家长所器重的,那么有关小学英语教学论文要怎么写呢...
英语口语学习必看的方法技巧 英语口语学习必看的方法技巧如何才能说流利的英语? 说外语时,我们主要应做到四件事:理解、回答、提问、...
四级英语作文选:Birth ... 四级英语作文范文选:Birth controlSince the Chinese Governmen...
金融专业英语面试自我介绍 金融专业英语面试自我介绍3篇  金融专业的学生面试时,面试官要求用英语做自我介绍该怎么说。下面是小编...
我的李老师走了四年级英语日记... 我的李老师走了四年级英语日记带翻译  我上了五个学期的小学却换了六任老师,李老师是带我们班最长的语文...
小学三年级英语日记带翻译捡玉... 小学三年级英语日记带翻译捡玉米  今天,我和妈妈去外婆家,外婆家有刚剥的`玉米棒上带有玉米籽,好大的...
七年级英语优秀教学设计 七年级英语优秀教学设计  作为一位兢兢业业的人民教师,常常要写一份优秀的教学设计,教学设计是把教学原...
我的英语老师作文 我的英语老师作文(通用21篇)  在日常生活或是工作学习中,大家都有写作文的经历,对作文很是熟悉吧,...
英语老师教学经验总结 英语老师教学经验总结(通用19篇)  总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成...
初一英语暑假作业答案 初一英语暑假作业答案  英语练习一(基础训练)第一题1.D2.H3.E4.F5.I6.A7.J8.C...
大学生的英语演讲稿 大学生的英语演讲稿范文(精选10篇)  使用正确的写作思路书写演讲稿会更加事半功倍。在现实社会中,越...
VOA美国之音英语学习网址 VOA美国之音英语学习推荐网址 美国之音网站已经成为语言学习最重要的资源站点,在互联网上还有若干网站...
商务英语期末试卷 Part I Term Translation (20%)Section A: Translate ...