OpenCV4 DNN模块
DNN- 深度神经网络
人脸检测的发展过程:
OpenCV3.3之前基于HAAR/LBP级联检测
OpenCV3.3开始支持深度学习人脸检测支持人脸检测
模型caffe/tensorflowOpenCV4.5.4 支持人脸检测+landmark
模型下载地址:
OpenCV人脸检测支持演化:
# 读取模型:
1. readNetFromTensorflow
# 转换为blob对象:(实际上就是一个tensor)
2. blobFromImage
# 设置输入:
3. setInput
# 推理预测:
4. forward
1.readNetfromTensorflow 加载模型
2.blobFromImage转换输入格式数据
3.setInput设置输入数据
4.forward推理
5.对输出的数据 Nx7 完成解析
6.绘制矩形框跟得分
加载模型一次即可,推理可以执行多次!
# 人脸识别需要的文件
model_bin ="../data/opencv_face_detector_uint8.pb"
config_text = "../data/opencv_face_detector.pbtxt"# 识别一张图片中的人脸
def frame_face_demo():# 记录开始时间a = time.time()print(a)# 获取摄像头font = cv.FONT_HERSHEY_SIMPLEXfont_scale = 0.5thickness = 1# 部署tensorflow模型net = cv.dnn.readNetFromTensorflow(model_bin, config=config_text)# 记录调用时长print(time.time() - a)print(time.strftime('%Y-%m-%d %H:%M:%S'))e1 = cv.getTickCount()# 摄像头是和人对立的,将图像垂直翻转frame = cv.imread(r"F:\python\opencv-4.x\samples\data\lena.jpg")h, w, c = frame.shapeprint("h:", h, "w: ", w, "c: ", c)# 模型输入:1x3x300x300# 1.0表示不对图像进行缩放,设定图像尺寸为(300, 300),减去一个设定的均值(104.0, 177.0, 123.0),是否交换BGR通道和是否剪切都选Falseblobimage = cv.dnn.blobFromImage(frame, 1.0, (300, 300), (104.0, 177.0, 123.0), False, False)net.setInput(blobimage)# forward之后,模型输出:1xNx7cvout = net.forward()print(cvout.shape)t, _ = net.getPerfProfile()label = "Inference time: %.2f ms" % (t * 1000.0 / cv.getTickFrequency())# 绘制检测矩形# 只考虑后五个参数for detection in cvout[0, 0, :]:# 获取置信度score = float(detection[2])objindex = int(detection[1])# 置信度>0.5说明是人脸if score > 0.5:# 获取实际坐标left = detection[3] * wtop = detection[4] * hright = detection[5] * wbottom = detection[6] * h# 绘制矩形框cv.rectangle(frame, (int(left), int(top)), (int(right), int(bottom)), (255, 0, 0), thickness=2)# 绘制类别跟得分label_txt = "score:%.2f" % score# 获取文本的位置和基线(fw, uph), dh = cv.getTextSize(label_txt, font, font_scale, thickness)cv.rectangle(frame, (int(left), int(top) - uph - dh), (int(left) + fw, int(top)), (255, 255, 255), -1, 8)cv.putText(frame, label_txt, (int(left), int(top) - dh), font, font_scale, (255, 0, 255), thickness)e2 = cv.getTickCount()fps = cv.getTickFrequency() / (e2 - e1)cv.putText(frame, label + (" FPS: %.2f" % fps), (10, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2)cv.imshow("face-dectection-demo", frame)# 释放资源cv.waitKey(0)cv.destroyAllWindows()# 视频文件执行之后会有警告但是不影响使用
结果示例:
# 人脸识别需要的文件
model_bin ="../data/opencv_face_detector_uint8.pb"
config_text = "../data/opencv_face_detector.pbtxt"# 实时人脸识别摄像头
def video_face_demo():# 记录开始时间a = time.time()print(a)# 获取摄像头cap = cv.VideoCapture(0)font = cv.FONT_HERSHEY_SIMPLEXfont_scale = 0.5thickness = 1# 部署tensorflow模型net = cv.dnn.readNetFromTensorflow(model_bin, config=config_text)# 记录调用时长print(time.time() - a)print(time.strftime('%Y-%m-%d %H:%M:%S'))while True:e1 = cv.getTickCount()# 获取每一帧的帧率fps = cap.get(cv.CAP_PROP_FPS)print(fps)# 摄像头读取,ret为是否成功打开摄像头,true,false。 frame为视频的每一帧图像ret, frame = cap.read()# 摄像头是和人对立的,将图像垂直翻转frame = cv.flip(frame, 1)if ret is not True:breakh, w, c = frame.shapeprint("h:", h, "w: ", w, "c: ", c)# 模型输入:1x3x300x300# 1.0表示不对图像进行缩放,设定图像尺寸为(300, 300),减去一个设定的均值(104.0, 177.0, 123.0),是否交换BGR通道和是否剪切都选Falseblobimage = cv.dnn.blobFromImage(frame, 1.0, (300, 300), (104.0, 177.0, 123.0), False, False)net.setInput(blobimage)# forward之后,模型输出:1xNx7cvout = net.forward()print(cvout.shape)t, _ = net.getPerfProfile()label = "Inference time: %.2f ms" % (t * 1000.0 / cv.getTickFrequency())# 绘制检测矩形# 只考虑后五个参数for detection in cvout[0, 0, :]:# 获取置信度score = float(detection[2])objindex = int(detection[1])# 置信度>0.5说明是人脸if score > 0.5:# 获取实际坐标left = detection[3] * wtop = detection[4] * hright = detection[5] * wbottom = detection[6] * h# 绘制矩形框cv.rectangle(frame, (int(left), int(top)), (int(right), int(bottom)), (255, 0, 0), thickness=2)# 绘制类别跟得分label_txt = "score:%.2f" % score# 获取文本的位置和基线(fw, uph), dh = cv.getTextSize(label_txt, font, font_scale, thickness)cv.rectangle(frame, (int(left), int(top) - uph - dh), (int(left) + fw, int(top)), (255, 255, 255), -1, 8)cv.putText(frame, label_txt, (int(left), int(top) - dh), font, font_scale, (255, 0, 255), thickness)e2 = cv.getTickCount()fps = cv.getTickFrequency() / (e2 - e1)cv.putText(frame, label + (" FPS: %.2f" % fps), (10, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2)cv.imshow("face-dectection-demo", frame)# 10ms显示一张图片c = cv.waitKey(10)if c == 27:break# 释放资源cap.release()cv.waitKey(0)cv.destroyAllWindows()# 视频文件执行之后会有警告但是不影响使用
结果示例:
本系列所有OpenCv相关的代码示例和内容均来自博主学习的网站:opencv_course