第一章.感知机
①.真值表:
x1 | x2 | y |
---|---|---|
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
②.基本功能:
与门仅在两个输入都为1时,输出值为1,其他时候输出值为0。
③.代码实现:
import numpy as np#举例:(w0,w1,θ)=[0.5,0.5,0.7]#第一种方式
def AND(x1, x2):w1, w2, theta = 0.5, 0.5, 0.7thresh = x1 * w1 + x2 * w2if thresh > theta:return 1else:return 0#第二种方式
def AND(x1, x2):x = np.array([x1, x2])w = np.array([0.5, 0.5])b = -0.7thresh = np.sum(x * w) + bif thresh > 0:return 1else:return 0print('x1=0,x2=0,y=', AND(0, 0))
print('x1=0,x2=1,y=', AND(0, 1))
print('x1=1,x2=0,y=', AND(1, 0))
print('x1=1,x2=1,y=', AND(1, 1))
④.结果展示:
①.真值表:
x1 | x2 | y |
---|---|---|
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
②.基本功能:
只要把实现与门的参数值符号取反,就可以实现与非门。
③.代码实现:
import numpy as np# 举例:(w0,w1,θ)=[-0.5,-0.5,-0.7]#第一种方式
def NAND(x1, x2):w1, w2, theta = -0.5, -0.5, -0.7thresh = x1 * w1 + x2 * w2if thresh > theta:return 1else:return 0#第二种方式
def NAND(x1, x2):x = np.array([x1, x2])w = np.array([-0.5, -0.5])b = 0.7thresh = np.sum(x * w) + bif thresh > 0:return 1else:return 0print('x1=0,x2=0,y=', NAND(0, 0))
print('x1=0,x2=1,y=', NAND(0, 1))
print('x1=1,x2=0,y=', NAND(1, 0))
print('x1=1,x2=1,y=', NAND(1, 1))
④.结果展示:
①.真值表:
x1 | x2 | y |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
②.基本功能:
两个输入信号中,只要有一个输入信号为1,输出就为1。
③.代码实现:
import numpy as np# 举例:(w0,w1,θ)=[0.5,0.5,0.4]# 第一种方式
def OR(x1, x2):w1, w2, theta = 0.5, 0.5, 0.4thresh = x1 * w1 + x2 * w2if thresh > theta:return 1else:return 0# 第二种方式
def OR(x1, x2):x = np.array([x1, x2])w = np.array([0.5, 0.5])b = -0.4thresh = np.sum(x * w) + bif thresh > 0:return 1else:return 0print('x1=0,x2=0,y=', OR(0, 0))
print('x1=0,x2=1,y=', OR(0, 1))
print('x1=1,x2=0,y=', OR(1, 0))
print('x1=1,x2=1,y=', OR(1, 1))
④.结果展示:
单层感知机无法表示异或门,但我们可以通过多层感知机(与门,与非门,或门组合使用)来实现异或门。
①.真值表:
x1 | x2 | y |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
②.基本功能:
若两个输入信号相同,则输出信号为0,若两个输入信号不同,则输出信号为1.
③.代码实现:
import numpy as npdef AND(x1, x2):x = np.array([x1, x2])w = np.array([0.5, 0.5])b = -0.7thresh = np.sum(x * w) + bif thresh > 0:return 1else:return 0def NAND(x1, x2):x = np.array([x1, x2])w = np.array([-0.5, -0.5])b = 0.7thresh = np.sum(x * w) + bif thresh > 0:return 1else:return 0def OR(x1, x2):x = np.array([x1, x2])w = np.array([0.5, 0.5])b = -0.4thresh = np.sum(x * w) + bif thresh > 0:return 1else:return 0def XOR(x1, x2):value1 = NAND(x1, x2)value2 = OR(x1, x2)y = AND(value1, value2)return yprint('x1=0,x2=0,y=', XOR(0, 0))
print('x1=0,x2=1,y=', XOR(0, 1))
print('x1=1,x2=0,y=', XOR(1, 0))
print('x1=1,x2=1,y=', XOR(1, 1))
④.结果展示:
上一篇:Jenkins集群配置/并发构建