全网资料最全Java数据结构与算法-----算法分析
创始人
2024-05-27 11:29:11
0

算法分析

研究算法的最终目的就是如何花更少的时间,如何占用更少的内存去完成相同的需求,并且也通过案例演示了不同算法之间时间耗费和空间耗费上的差异,但我们并不能将时间占用和空间占用量化,因此,接下来我们要学习有关算法时间耗费和算法空间耗费的描述和分析。有关算法时间耗费分析,我们称之为算法的时间复杂度分析,有关算法的空间耗费分析,我们称之为算法的空间复杂度分析。

算法的时间复杂度分析

我们要计算算法时间耗费情况,首先我们得度量算法的执行时间,那么如何度量呢?
事后分析估算方法:
比较容易想到的方法就是我们把算法执行若干次,然后拿个计时器在旁边计时,这种事后统计的方法看上去的确不错,并且也并非要我们真的拿个计算器在旁边计算,因为计算机都提供了计时的功能。这种统计方法主要是通过设计好的测试程序和测试数据,利用计算机计时器对不同的算法编制的程序的运行时间进行比较,从而确定算法效率的高低,但是这种方法有很大的缺陷:必须依据算法实现编制好的测试程序,通常要花费大量时间和精力,测试完了如果发现测试的是非常糟糕的算法,那么之前所做的事情就全部白费了,并且不同的测试环境(硬件环境)的差别导致测试的结果差异也很大。

public static void main(String[] args) {
long start = System.currentTimeMillis();
int sum = 0;
int n=100;
for (int i = 1; i <= n; i++) {
sum += i;
}
System.out.println("sum=" + sum);
long end = System.currentTimeMillis();
System.out.println(end-start);
}

事前分析估算方法:
在计算机程序编写前,依据统计方法对算法进行估算,经过总结,我们发现一个高级语言编写的程序程序在计算机
上运行所消耗的时间取决于下列因素:
1.算法采用的策略和方案;
2.编译产生的代码质量;
3.问题的输入规模(所谓的问题输入规模就是输入量的多少);
4.机器执行指令的速度;

由此可见,抛开这些与计算机硬件、软件有关的因素,一个程序的运行时间依赖于算法的好坏和问题的输入规模。
如果算法固定,那么该算法的执行时间就只和问题的输入规模有关系了。
我么再次以之前的求和案例为例,进行分析。
需求:
计算1到100的和。
第一种解法:

如果输入量为n为1,则需要计算1次;
如果输入量n为1亿,则需要计算1亿次;
public static void main(String[] args) {
int sum = 0;//执行1次
int n=100;//执行1次
for (int i = 1; i <= n; i++) {//执行了n+1次
sum += i;//执行了n次
}
System.out.println("sum=" + sum);
}

第二种解法:

如果输入量为n为1,则需要计算1次;
如果输入量n为1亿,则需要计算1次;
public static void main(String[] args) {
int sum = 0;//执行1次
int n=100;//执行1次
sum = (n+1)*n/2;//执行1次
System.out.println("sum="+sum);
}

因此,当输入规模为n时,第一种算法执行了1+1+(n+1)+n=2n+3次;第二种算法执行了1+1+1=3次。如果我们把
第一种算法的循环体看做是一个整体,忽略结束条件的判断,那么其实这两个算法运行时间的差距就是n和1的差
距。
为什么循环判断在算法1里执行了n+1次,看起来是个不小的数量,但是却可以忽略呢?我们来看下一个例子:
需求:
计算100个1+100个2+100个3+...100个100的结果
代码:

public static void main(String[] args) {
int sum=0;
int n=100;
for (int i = 1; i <=n ; i++) {
for (int j = 1; j <=n ; j++) {
sum+=i;
}
}
System.out.println("sum="+sum);
}

上面这个例子中,如果我们要精确的研究循环的条件执行了多少次,是一件很麻烦的事情,并且,由于真正计算和的代码是内循环的循环体,所以,在研究算法的效率时,我们只考虑核心代码的执行次数,这样可以简化分析。
我们研究算法复杂度,侧重的是当输入规模不断增大时,算法的增长量的一个抽象(规律),而不是精确地定位需要执行多少次,因为如果是这样的话,我们又得考虑回编译期优化等问题,容易主次跌倒。我们不关心编写程序所用的语言是什么,也不关心这些程序将跑在什么样的计算机上,我们只关心它所实现的算法。这样,不计那些循环索引的递增和循环终止的条件、变量声明、打印结果等操作,最终在分析程序的运行时间时,最重要的是把程序看做是独立于程序设计语言的算法或一系列步骤。我们分析一个算法的运行时间,最重要的就是把核心操作的次数和输入规模关联起来。

函数渐近增长


给定两个函数f(n)和g(n),如果存在一个整数N,使得对于所有的n>N,f(n)总是比g(n)大,那么我们说f(n)的增长渐近快于g(n)。
概念似乎有点艰涩难懂,那接下来我们做几个测试。
测试一:
假设四个算法的输入规模都是n:
1.算法A1要做2n+3次操作,可以这么理解:先执行n次循环,执行完毕后,再有一个n次循环,最后有3次运算;
2.算法A2要做2n次操作;
3.算法B1要做3n+1次操作,可以这个理解:先执行n次循环,再执行一个n次循环,再执行一个n次循环,最后有1
次运算。
4.算法B2要做3n次操作;
那么,上述算法,哪一个更快一些呢?

通过数据表格,比较算法A1和算法B1:
当输入规模n=1时,A1需要执行5次,B1需要执行4次,所以A1的效率比B1的效率低;
当输入规模n=2时,A1需要执行7次,B1需要执行7次,所以A1的效率和B1的效率一样;
当输入规模n>2时,A1需要的执行次数一直比B1需要执行的次数少,所以A1的效率比B1的效率高;
所以我们可以得出结论:

当输入规模n>2时,算法A1的渐近增长小于算法B1 的渐近增长
通过观察折线图,我们发现,随着输入规模的增大,算法A1和算法A2逐渐重叠到一块,算法B1和算法B2逐渐重叠
到一块,所以我们得出结论:
随着输入规模的增大,算法的常数操作可以忽略不计
测试二:
假设四个算法的输入规模都是n:
1.算法C1需要做4n+8次操作
2.算法C2需要做n次操作
3.算法D1需要做2n^2次操作
4.算法D2需要做n^2次操作
那么上述算法,哪个更快一些?

 通过数据表格,对比算法C1和算法D1:
当输入规模n<=3时,算法C1执行次数多于算法D1,因此算法C1效率低一些;
当输入规模n>3时,算法C1执行次数少于算法D1,因此,算法D2效率低一些,
所以,总体上,算法C1要优于算法D1. 

通过折线图,对比对比算法C1和C2:
随着输入规模的增大,算法C1和算法C2几乎重叠
通过折线图,对比算法C系列和算法D系列:
随着输入规模的增大,即使去除n^2前面的常数因子,D系列的次数要远远高于C系列。
因此,可以得出结论:
随着输入规模的增大,与最高次项相乘的常数可以忽略
测试三:
假设四个算法的输入规模都是n:
算法E1:
2n^2+3n+1;
算法E2:
n^2
算法F1:
2n^3+3n+1
算法F2:
n^3
那么上述算法,哪个更快一些?

 通过数据表格,对比算法E1和算法F1:
当n=1时,算法E1和算法F1的执行次数一样;
当n>1时,算法E1的执行次数远远小于算法F1的执行次数;
所以算法E1总体上是由于算法F1的。
通过折线图我们会看到,算法F系列随着n的增长会变得特块,算法E系列随着n的增长相比较算法F来说,变得比较慢,所以可以得出结论:
最高次项的指数大的,随着n的增长,结果也会变得增长特别快 

算法时间复杂度

 大O记法
定义:
在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随着n的变化情况并确定T(n)的量级。算法的时间复杂度,就是算法的时间量度,记作:T(n)=O(f(n))。它表示随着问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称时间复杂度,其中f(n)是问题规模n的某个函数。
在这里,我们需要明确一个事情:执行次数=执行时间
用大写O()来体现算法时间复杂度的记法,我们称之为大O记法。一般情况下,随着输入规模n的增大,T(n)增长最
慢的算法为最优算法。
下面我们使用大O表示法来表示一些求和算法的时间复杂度:
算法一:

public static void main(String[] args) {
int sum = 0;//执行1次
int n=100;//执行1次
sum = (n+1)*n/2;//执行1次
System.out.println("sum="+sum);
}

算法二:

public static void main(String[] args) {
int sum = 0;//执行1次
int n=100;//执行1次
for (int i = 1; i <= n; i++) {
sum += i;//执行了n次
}
System.out.println("sum=" + sum);
}
public static void main(String[] args) {
int sum=0;//执行1次
int n=100;//执行1次
for (int i = 1; i <=n ; i++) {
for (int j = 1; j <=n ; j++) {
sum+=i;//执行n^2次
}
}
System.out.println("sum="+sum);
}

如果忽略判断条件的执行次数和输出语句的执行次数,那么当输入规模为n时,以上算法执行的次数分别为:
算法一:3次
算法二:n+3次
算法三:n^2+2次
如果用大O记法表示上述每个算法的时间复杂度,应该如何表示呢?基于我们对函数渐近增长的分析,推导大O阶
的表示法有以下几个规则可以使用:
1.用常数1取代运行时间中的所有加法常数;
2.在修改后的运行次数中,只保留高阶项;
3.如果最高阶项存在,且常数因子不为1,则去除与这个项相乘的常数;
所以,上述算法的大O记法分别为:
算法一:O(1)
算法二:O(n)

算法的空间复杂度分析

计算机的软硬件都经历了一个比较漫长的演变史,作为为运算提供环境的内存,更是如此,从早些时候的512k,经
历了1M,2M,4M...等,发展到现在的8G,甚至16G和32G,所以早期,算法在运行过程中对内存的占用情况也是
一个经常需要考虑的问题。我么可以用算法的空间复杂度来描述算法对内存的占用。
java中常见内存占用
1.基本数据类型内存占用情况:

 计算机访问内存的方式都是一次一个字节

一个引用(机器地址)需要8个字节表示:
例如: Date date = new Date(),则date这个变量需要占用8个字节来表示
4.创建一个对象,比如new Date(),除了Date对象内部存储的数据(例如年月日等信息)占用的内存,该对象本身也有内存开销,每个对象的自身开销是16个字节,用来保存对象的头信息。
5.一般内存的使用,如果不够8个字节,都会被自动填充为8字节:

 

6.java中数组被被限定为对象,他们一般都会因为记录长度而需要额外的内存,一个原始数据类型的数组一般需要24字节的头信息(16个自己的对象开销,4字节用于保存长度以及4个填充字节)再加上保存值所需的内存。 

算法的空间复杂度
了解了java的内存最基本的机制,就能够有效帮助我们估计大量程序的内存使用情况。
算法的空间复杂度计算公式记作:S(n)=O(f(n)),其中n为输入规模,f(n)为语句关于n所占存储空间的函数。
案例:
对指定的数组元素进行反转,并返回反转的内容。
解法一:

public static int[] reverse1(int[] arr){
int n=arr.length;//申请4个字节
int temp;//申请4个字节
for(int start=0,end=n-1;start<=end;start++,end--){
temp=arr[start];
arr[start]=arr[end];
arr[end]=temp;
}
return arr;
}

解法二:

public static int[] reverse2(int[] arr){
int n=arr.length;//申请4个字节
int[] temp=new int[n];//申请n*4个字节+数组自身头信息开销24个字节
for (int i = n-1; i >=0; i--) {
temp[n-1-i]=arr[i];
}
return temp;
}

忽略判断条件占用的内存,我们得出的内存占用情况如下:
算法一:
不管传入的数组大小为多少,始终额外申请4+4=8个字节;
算法二:
4+4n+24=4n+28;
根据大O推导法则,算法一的空间复杂度为O(1),算法二的空间复杂度为O(n),所以从空间占用的角度讲,算法一要
优于算法二。
由于java中有内存垃圾回收机制,并且jvm对程序的内存占用也有优化(例如即时编译),我们无法精确的评估一个java程序的内存占用情况,但是了解了java的基本内存占用,使我们可以对java程序的内存占用情况进行估算。
由于现在的计算机设备内存一般都比较大,基本上个人计算机都是4G起步,大的可以达到32G,所以内存占用一般情况下并不是我们算法的瓶颈,普通情况下直接说复杂度,默认为算法的时间复杂度。但是,如果你做的程序是嵌入式开发,尤其是一些传感器设备上的内置程序,由于这些设备的内存很小,一般为几kb,这个时候对算法的空间复杂度就有要求了,但是一般做java开发的,基本上都是服务器开发,一般不存在这样的问题。

相关内容

热门资讯

虎年春节对联 虎年春节对联(精选230副)  在快速变化和不断变革的`今天,大家或多或少都接触过一些对联吧,对联是...
小小消防员作文700字 小小消防员作文700字  11月9日是全国消防安全教育日,为了提高我们的消防安全意识,宣城日报小记者...
描写春天的比喻句 描写春天的比喻句(精选60句)  春天像辛勤的园丁,精心的呵护着花草,让它们茁壮生长。下面是小编帮大...
老子简介 老子简介  简介,即简明扼要的介绍。是当事人全面而简洁地介绍情况的一种书面表达方式,它是应用写作学研...
写作叙述方法之分叙法 写作叙述方法之分叙法  分叙法是指叙述两件或两件以上的同一时间内不同地点发生的事情,也叫平叙法。以下...
匆匆仿写作文 匆匆仿写作文(精选30篇)  作文,就是将生活中的见闻、感受描绘出来,将对生活的想像与思考表达出来,...
中国文学常识 中国文学常识大全  常识,一般指从事各项工作以及进行学术研究所需具备的相关领域内的基础知识。下面是小...
佛寺庙宇对联 佛寺庙宇对联(精选70句)  寺庙对联内容丰富,言简意赅。是我国佛教文化重要组成部分,也是我国寺庙不...
中国四大名著文学常识 中国四大名著文学常识  中国四大名著是指《水浒传》《三国演义》《西游记》《红楼梦》(按照成书先后顺序...
圆明园祭阅读答案   (1)那天很冷,我却刻意要到圆明园去。朋友们都劝说,圆明园没有什么可看的,只是几块烂石头,我说,...
秋后的蚂蚱歇后语是什么   歇后语是我国人民在生活实践中创造的一种特殊语言形式。它一般由两个部分构成,前半截是形象的比喻, ...
教师节对联 教师节对联(精选55句)  在社会一步步向前发展的'今天,大家总少不了接触一些耳熟能详的对联吧,对联...
新年的对联 新年的对联(精选115句)  在现在的社会生活中,大家都经常接触到对联吧,对联作为一种习俗,是汉族传...
描写天气谚语 描写天气谚语大全  在平凡的学习、工作、生活中,大家都有令自己印象深刻的谚语吧,谚语是劳动人民的生活...
雷声大雨点小歇后语是什么   雷声大雨点小——(虚张声势):比喻做起事来声势造得很大,实际行动却很少。  雷声大,雨点小 : ...
小学优秀班主任事迹材料 小学优秀班主任事迹材料(精选11篇)  根据自己的兴趣爱好,成立活动小组,再聘请相关学科老师为指导教...
王羲之兰亭序全文及译文 王羲之兰亭序全文及译文  永和九年,岁在癸丑,暮春之初,会于会稽山阴之兰亭,修稧事也。下面是小编为你...
仰仗是褒义词吗 仰仗是褒义词吗  仰仗常指事物的根基状态,依靠;依赖,我们看看下面的相关资料吧!  仰仗是褒义词吗?...
自考英语写作基础试题及答案 自考英语写作基础试题及答案  从小学、初中、高中到大学乃至工作,我们都要用到试题,试题是命题者根据一...
你陪伴我长大的作文500字 你陪伴我长大的作文500字  在我六岁那年,一个小小的你——植物小马诞生了。你没有其他玩具那么美丽,...