29- 迁移学习 (TensorFlow系列) (深度学习)
创始人
2024-05-28 23:51:10
0

知识要点

  • 迁移学习: 使用别人预训练模型参数时,要注意别人的预处理方式。

  • 常见的迁移学习方式:

    • 载入权重后训练所有参数.
    • 载入权重后只训练最后几层参数.
    • 载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层.
  • 训练数据是 10_monkeys 数据: 10种猴子的图片集
  • 图片显示: plt.imshow(mokey)
  • 读取图片: mokey = plt.imread('./50.jpg')

导入resnet 模型:

  • resnet50 = keras.applications.ResNet50(include_top=False, pooling='avg')      # 导入模型
  • model = keras.models.Sequential()      # 开始建模
  • model.add(resnet50)     # 添加resnet 网络
  • model.add(keras.layers.Dense(num_classes=10, activation = 'softmax'))     # 添加全连接层
  • model.layers[0].trainable = False     # 除了最后一个全连接层, 其余部分参数不变
  • 模型配置:
model.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['acc'])
  • valid_datagen = keras.preprocessing.image.ImageDataGenerator(preprocessing_function = keras.applications.resnet50.preprocess_input)    # 数据初始化处理
  • 指定后面几层参数变化:
# 切片指定, 不可调整的层数
for layer in resnet50.layers[0:-5]:layer.trainable = False


一 迁移学习

1.1 简介

使用迁移学习的优势:

  • 能够快速的训练出一个理想的结果
  • 当数据集较小时也能训练出理想的效果

注意:使用别人预训练模型参数时,要注意别人的预处理方式。

1.2 常见迁移方式

常见的迁移学习方式:

  • 载入权重后训练所有参数.
  • 载入权重后只训练最后几层参数.
  • 载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层.

二 代码实现

2.1 导包

from tensorflow import keras
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as pltcpu=tf.config.list_physical_devices("CPU")
tf.config.set_visible_devices(cpu)
print(tf.config.list_logical_devices())

2.2 迁移模型  (在迁移模型 后加一层)

resnet50 = keras.applications.ResNet50(include_top=False, pooling='avg')num_classes =10
model = keras.models.Sequential()
model.add(resnet50)
model.add(keras.layers.Dense(num_classes, activation = 'softmax'))
model.summary()

2.3 配置模型 (除最后一层外, 其余参数全部冻结)

# 把除最后一层的参数外, 全部冻结
model.layers[0].trainable = False
model.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['acc'])

2.4 导入数据

train_dir = '../day 48 resnet/training/training/'
valid_dir = '../day 48 resnet/validation/validation/'
  • 原始数据处理
train_datagen = keras.preprocessing.image.ImageDataGenerator(preprocessing_function = keras.applications.resnet50.preprocess_input,rotation_range = 40,width_shift_range = 0.2,height_shift_range = 0.2,shear_range = 0.2,zoom_range = 0.2,horizontal_flip = True,vertical_flip = True,fill_mode = 'nearest')height = 224
width = 224
channels = 3
batch_size = 32
num_classes = 10train_generator = train_datagen.flow_from_directory(train_dir,target_size= (height, width),batch_size = batch_size,shuffle= True,seed = 7,class_mode= 'categorical')valid_datagen = keras.preprocessing.image.ImageDataGenerator(preprocessing_function = keras.applications.resnet50.preprocess_input)valid_generator = valid_datagen.flow_from_directory(valid_dir,target_size= (height, width),batch_size= batch_size,shuffle= True,seed = 7,class_mode= 'categorical')
print(train_generator.samples)   # 1098
print(valid_generator.samples)   # 272

2.5 模型训练

# 使用迁移学习, 效果较差, 原始数据的处理方式不同
# 修改需处理方式继续执行, 效果较好
histroy = model.fit(train_generator,steps_per_epoch= train_generator.samples // batch_size,epochs = 10,validation_data = valid_generator,validation_steps= valid_generator.samples // batch_size)

 2.6 训练后面几层神经网络参数

resnet50 = keras.applications.ResNet50(include_top=False, pooling='avg', weights='imagenet')
# 切片指定, 不可调整的层数
for layer in resnet50.layers[0:-5]:layer.trainable = False# 添加输出层
resnet50_new = keras.models.Sequential([resnet50, keras.layers.Dense(10, activation = 'softmax')])
resnet50_new.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['acc'])
resnet50_new.summary()

histroy = resnet50_new.fit(train_generator,steps_per_epoch= train_generator.samples // batch_size,epochs = 10,validation_data = valid_generator,validation_steps= valid_generator.samples // batch_size)

三 图片处理查看

3.1 图片显示

# 预测数据
mokey = plt.imread('./n5020.jpg')
plt.imshow(mokey)    # mokey.shape  (600, 336, 3)

for i in range(2):x, y = train_generator.next()print(type(x), type(y))    #  print('***', x.shape, y.shape)  # *** (32, 224, 224, 3) (32, 10)

3.2 尺寸变换

# 主要是形状和尺寸不对
# 改变尺寸, 再改变形状reshape
from scipy import ndimage  # 专门处理图片
# 改变形状
# 224 = 367 * x  x = 224/367
# 224 = 550 * y  y = 224/550
zoom = (224/mokey.shape[0], 224/mokey.shape[1])
monkey_zoomed = ndimage.zoom(mokey, (224/mokey.shape[0], 224/mokey.shape[1], 1))
monkey_zoomed.shape   # (224, 224, 3)
monkey_1 = keras.applications.resnet50.preprocess_input(monkey_zoomed)
monkey_1.min()    # -123.68
monkey_1 = monkey_1.reshape(1, 224, 224, 3)
model.predict(monkey_1).argmax(axis = 1)  # array([5], dtype=int64)

3.3 resnet 图片处理方式

3.3.1 前景查看

mokey1 = mokey/127.5
plt.imshow(mokey1)

3.3.2 背景查看

mokey1 = mokey1 - 1
plt.imshow(mokey1)

mokey1

相关内容

热门资讯

常用商务英语口语   商务英语是以适应职场生活的语言要求为目的,内容涉及到商务活动的方方面面。下面是小编收集的常用商务...
六年级上册英语第一单元练习题   一、根据要求写单词。  1.dry(反义词)__________________  2.writ...
复活节英文怎么说 复活节英文怎么说?复活节的英语翻译是什么?复活节:Easter;"Easter,anniversar...
2008年北京奥运会主题曲 2008年北京奥运会(第29届夏季奥林匹克运动会),2008年8月8日到2008年8月24日在中华人...
英语道歉信 英语道歉信15篇  在日常生活中,道歉信的使用频率越来越高,通过道歉信,我们可以更好地解释事情发生的...
六年级英语专题训练(连词成句... 六年级英语专题训练(连词成句30题)  1. have,playhouse,many,I,toy,i...
上班迟到情况说明英语   每个人都或多或少的迟到过那么几次,因为各种原因,可能生病,可能因为交通堵车,可能是因为天气冷,有...
小学英语教学论文 小学英语教学论文范文  引导语:英语教育一直都是每个家长所器重的,那么有关小学英语教学论文要怎么写呢...
英语口语学习必看的方法技巧 英语口语学习必看的方法技巧如何才能说流利的英语? 说外语时,我们主要应做到四件事:理解、回答、提问、...
四级英语作文选:Birth ... 四级英语作文范文选:Birth controlSince the Chinese Governmen...
金融专业英语面试自我介绍 金融专业英语面试自我介绍3篇  金融专业的学生面试时,面试官要求用英语做自我介绍该怎么说。下面是小编...
我的李老师走了四年级英语日记... 我的李老师走了四年级英语日记带翻译  我上了五个学期的小学却换了六任老师,李老师是带我们班最长的语文...
小学三年级英语日记带翻译捡玉... 小学三年级英语日记带翻译捡玉米  今天,我和妈妈去外婆家,外婆家有刚剥的`玉米棒上带有玉米籽,好大的...
七年级英语优秀教学设计 七年级英语优秀教学设计  作为一位兢兢业业的人民教师,常常要写一份优秀的教学设计,教学设计是把教学原...
我的英语老师作文 我的英语老师作文(通用21篇)  在日常生活或是工作学习中,大家都有写作文的经历,对作文很是熟悉吧,...
英语老师教学经验总结 英语老师教学经验总结(通用19篇)  总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成...
初一英语暑假作业答案 初一英语暑假作业答案  英语练习一(基础训练)第一题1.D2.H3.E4.F5.I6.A7.J8.C...
大学生的英语演讲稿 大学生的英语演讲稿范文(精选10篇)  使用正确的写作思路书写演讲稿会更加事半功倍。在现实社会中,越...
VOA美国之音英语学习网址 VOA美国之音英语学习推荐网址 美国之音网站已经成为语言学习最重要的资源站点,在互联网上还有若干网站...
商务英语期末试卷 Part I Term Translation (20%)Section A: Translate ...