Matlab小波去噪——基于wden函数的去噪分析
创始人
2024-05-29 01:43:23
0

文章目录

  • 一、问题描述
  • 二、代码
    • 问题1:原始信号加6分贝高斯白噪声
    • 问题2:确定合适的小波基函数
    • 问题3:确定最合适的阈值计算估计方法
    • 问题4:确定合适的分解层数
    • 问题5:实际信号去噪
    • 问题6:对比
  • 三、演示视频
  • 最后


一、问题描述

1.利用MATLAB绘制原始信号,对其加6分贝高斯白噪声;
2.以Minimaxi阈值法,软阈值函数,3层分解层数,分别用dbN和symN小波对加噪信号去噪,获得分解图和去噪后的图,并用信噪比和均方根误差作为评判标准,确定合适的小波基函数;
3.用第2步确定的小波基函数,软阈值函数,分解层数为3层,对无偏估计阈值(RigrSure)、固定式阈值(Sqtwolog)、启发式阈值(HeurSure)和极大极小阈值(Minimaxi)四种分别去噪,获得去噪后的图,并用信噪比和均方根误差作为评判标准,确定最合适的阈值计算估计方法;
4.用第2步确定的小波基函数,第3步确定的阈值计算估计准则,分别用分解层数为1,2,3,4,5,6对加噪信号进行去噪,获得去噪后得到图,并用信噪比和均方根误差作为评判标准;
5.用实际的信号加6分贝噪声对前面确定的小波基函数,阈值计算方法以及分解层数用小波阈值进行去噪,并求信噪比和均方根误差。
6、确定好小波基函数、阈值函数和分解层数后,分别模拟加入不同量的噪声与4阶巴特沃斯低通滤波器滤波对比

二、代码

问题1:原始信号加6分贝高斯白噪声

代码如下(示例):

clear
clc
close all
%% MATLAB绘制原始信号
load('data.mat'); %私聊发数据
data=data;
%% 加6分贝高斯白噪声
SNR=6; %6dB
noise=0.2*randn(size(data))*std(data)/db2mag(SNR);
s=data+noise;
figure;
subplot(211)
plot(data);ylabel('P/MPa');title('原始信号')
subplot(212)
plot(s);ylabel('P/MPa');title('加6dB高斯白噪声')

问题2:确定合适的小波基函数

代码如下(示例):

clear
clc
close all
%% MATLAB绘制原始信号
load('data.mat');
data=data;
%% 加6分贝高斯白噪声
SNR=6; %6dB
noise=0.2*randn(size(data))*std(data)/db2mag(SNR);
s=data+noise;
%% Minimaxi阈值法,软阈值函数,3层分解层数,db5去噪
wname=strvcat('sym4','sym5','db4','db5');
for i=1:4[C,L] = wavedec(s,3,wname(i,:));  %进行3层小波包分解s1=wden(s,'minimaxi','s','mln',3,wname(i,:)); %Minimaxi、软阈值,3层,db5figure;subplot(311)plot(data);xlabel('t/ms');ylabel('P/MPa');title('原始信号')subplot(312)plot(s);xlabel('t/ms');ylabel('P/MPa');title('加6dB高斯白噪声')subplot(313)plot(s1);xlabel('t/ms');ylabel('P/MPa');title(['Minimaxi-软阈值-3层-',wname(i,:)])figuresubplot(511)plot(data,'r');ylabel('s');title([wname(i,:),'小波分解图'])set(gca,'ytick',[]) set(gca,'xtick',[]) subplot(512)plot(C(1:L(2)),'b');ylabel('a3')set(gca,'ytick',[]) set(gca,'xtick',[]) subplot(513)plot(C(L(2):L(3)));ylabel('d3')set(gca,'ytick',[]) set(gca,'xtick',[]) subplot(514)plot(C(L(3):L(4)));ylabel('d2')set(gca,'ytick',[]) set(gca,'xtick',[]) subplot(515)plot(C(L(4):L(5)));ylabel('d1')SNR_s1(i)=snr(data,s1-data);RMSE_s1(i)=sqrt(mse(data-s1));   SNR_s11(i)=snr(s,s1-s);disp(['Minimaxi-软阈值-3层-',wname(i,:),':信噪比=',num2str(SNR_s1(i)),'dB,均方根误差=',num2str(RMSE_s1(i))])disp(['加噪后信噪比=',num2str(SNR_s11(i)),'dB'])disp('-----------------------------------------------------------')
end
%% 根据SNR选取较好的小波基函数
[m,index]=max(SNR_s1);
disp(['最合适的阈值计算估计方法为:',wname(index,:)])
disp('-----------------------------------------------------------')

问题3:确定最合适的阈值计算估计方法

代码如下(示例):

clear
clc
close all
%% MATLAB绘制原始信号
load('data.mat');
data=data;
%% 加6分贝高斯白噪声
SNR=6; %6dB
noise=0.2*randn(size(data))*std(data)/db2mag(SNR);
s=data+noise;
%% main2已经确定最合适的小波基函数
wname='sym5';
%% 无偏估计阈值(RigrSure)、固定式阈值(Sqtwolog)、启发式阈值(HeurSure)和极大极小阈值(Minimaxi)
TPTR=['rigrsure';'sqtwolog';'heursure';'minimaxi'];
for i=1:4s3=wden(s,TPTR(i,:),'s','mln',3,wname); %依次进行滤波figuresubplot(311)plot(data);xlabel('t/ms');ylabel('P/MPa');title('原始信号')subplot(312)plot(s);xlabel('t/ms');ylabel('P/MPa');title('加6dB高斯白噪声')subplot(313)plot(s3);xlabel('t/ms');ylabel('P/MPa');title(['采用',TPTR(i,:),'进行滤波'])snr_s3(i)=snr(data,s3-data);RMSE_s3(i)=sqrt(mse(data-s3));snr_s33(i)=snr(s,s3-s);disp([TPTR(i,:),'-软阈值-3层-',wname,':信噪比=',num2str(snr_s3(i)),'dB,均方根误差=',num2str(RMSE_s3(i))])disp(['加噪后信噪比=',num2str(snr_s33(i)),'dB'])disp('-----------------------------------------------------------')
end
%% 根据SNR选取较好的阈值计算估计方法
[m,index]=max(snr_s3);
disp(['最合适的阈值计算估计方法为:',TPTR(index,:)])
disp('-----------------------------------------------------------')

问题4:确定合适的分解层数

代码如下(示例):

clear
clc
close all
%% MATLAB绘制原始信号
load('data.mat');
data=data;
%% 加6分贝高斯白噪声
SNR=6; %6dB
noise=0.2*randn(size(data))*std(data)/db2mag(SNR);
s=data+noise;
%% main2和main3确定的小波基函数和阈值计算估计方法
wname='sym5';
TPTR='sqtwolog';
%% 分解层数为1,2,3,4,5,6
for i=1:6s4=wden(s,TPTR,'s','mln',i,wname); %依次进行滤波figuresubplot(311)plot(data);xlabel('t/ms');ylabel('P/MPa');title('原始信号')subplot(312)plot(s);xlabel('t/ms');ylabel('P/MPa');title('加6dB高斯白噪声')subplot(313)plot(s4);xlabel('t/ms');ylabel('P/MPa');title(['分解层数=',num2str(i)])snr_s4(i)=snr(data,s4-data);RMSE_s4(i)=sqrt(mse(data-s4));snr_s44(i)=snr(s,s4-s);disp([TPTR,'-软阈值-',num2str(i),'层-',wname,':信噪比=',num2str(snr_s4(i)),'dB,均方根误差=',num2str(RMSE_s4(i))])disp(['加噪后信噪比=',num2str(snr_s44(i)),'dB'])disp('-----------------------------------------------------------')
end
%% 根据SNR选取较好的分解层数
[m,index]=max(snr_s4);
disp(['最合适的分解层数为:',num2str(index)])
disp('-----------------------------------------------------------')

问题5:实际信号去噪

代码如下(示例):

clear
clc
close all
%% 读取实际的信号
data=xlsread('14#c1.csv');
data=data(:,2);
%% 加6分贝高斯白噪声
SNR=6; %6dB
noise=0.2*randn(size(data))*std(data)/db2mag(SNR);
s=data+noise;
%% 根据(2)(3)(4)确定参数
wname='sym5';
TPTR='sqtwolog';
lev=6;
%% 进行滤波
s5=wden(s,TPTR,'s','mln',lev,wname); %进行滤波
%% 绘制
figure;
subplot(311)
plot(data);xlabel('t/ms');ylabel('P/MPa');title('实际信号')
subplot(312)
plot(s);xlabel('t/ms');ylabel('P/MPa');title('加6dB高斯白噪声')
subplot(313)
plot(s5);xlabel('t/ms');ylabel('P/MPa');title('信号去噪')
snr_s55=snr(s,s5-s);
snr_s5=snr(data,s5-data);RMSE_s5=sqrt(mse(data-s5));
disp([TPTR,'-软阈值-',num2str(lev),'层-',wname,':信噪比=',num2str(snr_s5),'dB,均方根误差=',num2str(RMSE_s5)])
disp(['加噪后信噪比=',num2str(snr_s55),'dB'])

问题6:对比

代码如下(示例):

clear
clc
close all
%% 读取实际的信号
data=xlsread('14#c1.csv');
data=data(:,2);
fs=125000; 
%%
wname='sym5';
TPTR='sqtwolog';
lev=6;
%% 设计4阶巴特沃斯低通滤波器
fc=10000;
n=4;  %阶数
[b,a]=butter(n,fc/(fs/2), 'low');
%% 加1-16分贝高斯白噪声
for SNR=1:16 %6dBnoise=0.2*randn(size(data))*std(data)/db2mag(SNR);s=data+noise;s1=filter(b,a,s);  %filter既能进行IIR滤波又能进行FIR滤波s2=wden(s,TPTR,'s','mln',lev,wname); %进行滤波snr_s1(SNR)=snr(data,s1-data);RMSE_s1(SNR)=sqrt(mse(data-s1));snr_s2(SNR)=snr(data,s2-data);RMSE_s2(SNR)=sqrt(mse(data-s2));
end
figure;
plot(1:16,snr_s1,'o-r');
hold on
plot(1:16,snr_s2,'*-b');
xlabel('高斯白噪声dB');ylabel('SNR')
legend('FIR滤波','小波滤波')
title('信噪比曲线')
%% 
for SNR=2:2:10 %6dBnoise=0.2*randn(size(data))*std(data)/db2mag(SNR);s=data+noise;s1=filter(b,a,s);  %filter既能进行IIR滤波又能进行FIR滤波s2=wden(s,TPTR,'s','mln',lev,wname); %进行滤波figure;subplot(411)plot(data);xlabel('t/ms');ylabel('P/MPa');title('实际信号')subplot(412)plot(s);xlabel('t/ms');ylabel('P/MPa');title('加16dB高斯白噪声')subplot(413)plot(s1);xlabel('t/ms');ylabel('P/MPa');title('FIR信号去噪')subplot(414)plot(s1);xlabel('t/ms');ylabel('P/MPa');title('小波信号去噪')suptitle(['噪声大小=',num2str(SNR),'dB'])
end

三、演示视频

基于wden函数的去噪演示

最后

不定期发布一些matlab设计内容,敬请期待。包括但不限于如下内容:信号处理、通信仿真、gui设计、matlab appdesigner,simulink仿真。有任何有关MATLAB的问题可🐧咨询
在这里插入图片描述

相关内容

热门资讯

火烧云小学作文【最新6篇】 火烧云小学作文篇一:火烧云的美丽火烧云是一种非常美丽的自然景观,它们在天空中绽放出绚丽的色彩,给人们...
人间自有温情在作文(精简3篇... 人间自有温情在作文 篇一温情的力量人间自有温情,在日常生活中,我们时常能够感受到这种力量。温情是指人...
小学三年级抗疫情作文(精简5... 小学三年级抗疫情作文 篇一:我们一起抗疫,共克时艰新冠疫情的突然爆发给全世界带来了巨大的挑战,人们的...
有你真好的作文(通用6篇) 有你真好的作文 篇一有你真好每个人的生活中都会有那么一个重要的人,他们的存在让我们的生活变得更加美好...
我上学了(优选3篇) 我上学了 篇一我上学了已经有好几年了,回想起来,这段时光仿佛就在眨眼间过去了。刚开始上学的时候,我还...
有趣的游戏小学作文400字【... 有趣的游戏小学作文400字 篇一标题:童年乐园——躲猫猫游戏在我心中,有一个让我欢乐无比的游戏,那就...
那次玩得真高兴作文(优秀5篇... 那次玩得真高兴作文 篇一那次玩得真高兴上个周末,我和我的朋友们一起去了游乐园玩,那次真是玩得太高兴了...
初一七年级学生作文题目【优选... 初一七年级学生作文题目 篇一我的暑假计划暑假即将来临,我对未来的两个月充满了期待和计划。今年的暑假,...
假如考上了名校,我要回来看看... 假如考上了名校,我要回来看看我的母校小学作文 篇一当我考上了名校,我内心感到无比的兴奋和自豪。这是我...
校园桂花香小学作文【最新3篇... 校园桂花香小学作文 篇一校园桂花香小学作文我所在的学校是一所名为桂花香小学的学校,这个名字来源于学校...
春天小学一年级作文300字(... 春天小学一年级作文300字 篇一春天的花儿春天是一个美丽的季节,大地万物都在春天苏醒,充满了生机和活...
小学中秋节的作文【优选3篇】 小学中秋节的作文 篇一中秋节是中国传统的节日之一,也是我最喜欢的节日。在这一天,我和家人一起庆祝,品...
梦里清江小学作文【优质3篇】 梦里清江小学作文 篇一我爱梦里清江小学梦里清江小学是我上学的地方,它位于美丽的梦里清江边。每当我踏进...
难忘的秋游小学作文450字(... 难忘的秋游小学作文450字 篇一难忘的秋游今天,我们全班去郊游了,这是我度过的一个最难忘的秋天。我们...
可怜的骆驼作文(优质3篇) 可怜的骆驼作文 篇一骆驼是一种生活在沙漠中的动物,它们背上长着一座座驼峰,可以存储大量的水分,帮助它...
倔老头作文【优选3篇】 倔老头作文 篇一倔老头的坚持倔老头是我家附近的一位老先生,他已经七十多岁了,但他的身体和精神状态一直...
小学生一年级的作文400字(... 小学生一年级的作文400字 篇一我的暑假计划暑假就要来了,我有很多计划,让我来给大家说说吧!首先,我...
师爱温暖我的心小学作文【优秀... 师爱温暖我的心小学作文 篇一师爱温暖我的心作为一名小学生,我有幸遇到了一位非常特别的老师,她就是我的...
可爱的金毛小学作文【优秀3篇... 可爱的金毛小学作文 篇一我家的金毛小狗我家有一只可爱的金毛小狗,它的名字叫做小黄。小黄是一只非常聪明...
四年级上册三单元作文【优秀3... 四年级上册三单元作文 篇一我的家乡我是一个四年级的学生,我想给大家介绍一下我的家乡。我的家乡是一个美...