numpy数组与矩阵运算(二)
创始人
2024-05-29 04:12:24
0

文章目录

  • 矩阵生成与常用操作
    • 矩阵生成
    • 矩阵转置
    • 查看矩阵特性
    • 矩阵乘法
    • 计算相关系数矩阵
    • 计算方差、协方差、标准差
  • 计算特征值与特征向量
  • 计算逆矩阵
  • 求解线性方程组
  • 奇异值分解
  • 函数向量化

矩阵生成与常用操作

矩阵生成

扩展库numpy中提供的matrix()函数可以用来把列表、元组、range对象等Python可迭代对象转换为矩阵。

>>> import numpy as np
>>> x=np.matrix([[1,2,3],[4,5,6]])
>>> y=np.matrix([1,2,3,4,5,6])
>>> # 对矩阵x来说,x[1,1]和x[1][1]的含义不一样
>>> x
matrix([[1, 2, 3],[4, 5, 6]])
>>> y
matrix([[1, 2, 3, 4, 5, 6]])
>>> x[1,1]
5

矩阵转置

>>> x.T
matrix([[1, 4],[2, 5],[3, 6]])
>>> y.T
matrix([[1],[2],[3],[4],[5],[6]])

查看矩阵特性

>>> x=np.matrix([[1,2,3],[4,5,6]])
>>> x.mean() # 所有元素平均值
3.5
>>> x.mean(axis=0) # 纵向平均值
matrix([[2.5, 3.5, 4.5]])
>>> x.mean(axis=1) # 横向平均值
matrix([[2.],[5.]])
>>> x.sum() # 所有元素之和
21
>>> x.max(axis=1) # 横向最大值
matrix([[3],[6]])
>>> x.argmax(axis=1) # 横向最大值下标
matrix([[2],[2]], dtype=int64)
>>> x.diagonal() # 对角线元素
matrix([[1, 5]])
>>> x.nonzero() # 非0元素下标
(array([0, 0, 0, 1, 1, 1], dtype=int64), array([0, 1, 2, 0, 1, 2], dtype=int64))
>>> # 行下标列表和列下标列表

矩阵乘法

一个mxp的矩阵和一个pxn的矩阵,它们的乘积为一个mxn的矩阵

>>> x=np.matrix([[1,2,3],[4,5,6]])
>>> y=np.matrix([[1,2],[3,4],[5,6]])
>>> x*y
matrix([[22, 28],[49, 64]])

计算相关系数矩阵

>>> np.corrcoef([1,2,3,4],[4,3,2,1]) # 负相关,变化反向相反
array([[ 1., -1.],[-1.,  1.]])
>>> np.corrcoef([1,2,3,4],[8,3,2,1]) # 负相关,变化反向相反
array([[ 1.        , -0.91350028],[-0.91350028,  1.        ]])
>>> np.corrcoef([1,2,3,4],[1,2,3,4]) # 正相关,变化反向一致
array([[1., 1.],[1., 1.]])
>>> np.corrcoef([1,2,3,4],[1,2,3,40]) # 正相关,变化趋势接近
array([[1.       , 0.8010362],[0.8010362, 1.       ]])

计算方差、协方差、标准差

>>> np.cov([1,1,1,1,1]) # 方差
array(0.)
>>> np.std([1,1,1,1,1]) # 标准差
0.0
>>> x=[-2.1,-1,4.3]
>>> y=[3,1.1,0.12]
>>> X=np.vstack((x,y))
>>> X
array([[-2.1 , -1.  ,  4.3 ],[ 3.  ,  1.1 ,  0.12]])
>>> np.cov(X) # 协方差
array([[11.71      , -4.286     ],[-4.286     ,  2.14413333]])
>>> np.cov(x,y)
array([[11.71      , -4.286     ],[-4.286     ,  2.14413333]])
>>> np.std(X) # 标准差
2.2071223094538484
>>> np.std(X,axis=1)
array([2.79404128, 1.19558447])
>>> np.cov(x) # 方差
array(11.71)

计算特征值与特征向量

>>> A=np.array([[1,-3,3],[3,-5,3],[6,-6,4]])
>>> e,v=np.linalg.eig(A) # 特征值与特征向量
>>> e
array([ 4.+0.00000000e+00j, -2.+1.10465796e-15j, -2.-1.10465796e-15j])
>>> v
array([[-0.40824829+0.j        ,  0.24400118-0.40702229j,0.24400118+0.40702229j],[-0.40824829+0.j        , -0.41621909-0.40702229j,-0.41621909+0.40702229j],[-0.81649658+0.j        , -0.66022027+0.j        ,-0.66022027-0.j        ]])
>>> np.dot(A,v) # 矩阵与特征向量的乘积
array([[-1.63299316+0.00000000e+00j, -0.48800237+8.14044580e-01j,-0.48800237-8.14044580e-01j],[-1.63299316+0.00000000e+00j,  0.83243817+8.14044580e-01j,0.83243817-8.14044580e-01j],[-3.26598632+0.00000000e+00j,  1.32044054-5.55111512e-16j,1.32044054+5.55111512e-16j]])
>>> e*v # 特征值与特征向量的乘积
array([[-1.63299316+0.00000000e+00j, -0.48800237+8.14044580e-01j,-0.48800237-8.14044580e-01j],[-1.63299316+0.00000000e+00j,  0.83243817+8.14044580e-01j,0.83243817-8.14044580e-01j],[-3.26598632+0.00000000e+00j,  1.32044054-7.29317578e-16j,1.32044054+7.29317578e-16j]])
>>> np.isclose(np.dot(A,v),e*v) # 验证两者是否相等
array([[ True,  True,  True],[ True,  True,  True],[ True,  True,  True]])

计算逆矩阵

>>> x=np.matrix([[1,2,3],[4,5,6],[7,8,0]])
>>> y=np.linalg.inv(x) # 计算逆矩阵
>>> y
matrix([[-1.77777778,  0.88888889, -0.11111111],[ 1.55555556, -0.77777778,  0.22222222],[-0.11111111,  0.22222222, -0.11111111]])
>>> x*y # 对角线元素为1,其他元素为0或近似为0
matrix([[ 1.00000000e+00,  5.55111512e-17,  1.38777878e-17],[ 5.55111512e-17,  1.00000000e+00,  2.77555756e-17],[ 1.77635684e-15, -8.88178420e-16,  1.00000000e+00]])
>>> y*x
matrix([[ 1.00000000e+00, -1.11022302e-16,  0.00000000e+00],[ 8.32667268e-17,  1.00000000e+00,  2.22044605e-16],[ 6.93889390e-17,  0.00000000e+00,  1.00000000e+00]])

求解线性方程组

{a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2...an1x1+an2x2+...+annxn=bn\begin{cases} a11x1+a12x2+...+a1nxn=b1\\ a21x1+a22x2+...+a2nxn=b2\\ ...\\ an1x1+an2x2+...+annxn=bn\\ \end{cases}⎩⎧​a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2...an1x1+an2x2+...+annxn=bn​
可以写作矩阵相乘的形式 ax=b
其中,a为nxn的矩阵,x和b为nx1的矩阵

>>> a=np.array([[3,1],[1,2]]) # 系数矩阵
>>> b=np.array([9,8]) # 系数矩阵
>>> x=np.linalg.solve(a,b) # 求解
>>> x
array([2., 3.])
>>> np.dot(a,x) # 验证
array([9., 8.])
>>> np.linalg.lstsq(a,b) # 最小二乘解,返回解、余项、a的秩、a的奇异值Warning (from warnings module):File "", line 1
FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.
(array([2., 3.]), array([], dtype=float64), 2, array([3.61803399, 1.38196601]))
>>>

有报错不要慌

>>> np.linalg.lstsq(a,b,rcond=None) # 最小二乘解,返回解、余项、a的秩、a的奇异值
(array([2., 3.]), array([], dtype=float64), 2, array([3.61803399, 1.38196601]))

可以写个方程去尝试一下,我试了一下,应该是没有问题的。

奇异值分解

把矩阵a分解为u*np.diag(s)*v的形式并返回u、s和v。其中数组s中的元素是矩阵a的元素值

>>> import numpy as np
>>> a=np.matrix([[1,2,3],[4,5,6],[7,8,9]])
>>> u,s,v=np.linalg.svd(a) # 奇异值分解
>>> u
matrix([[-0.21483724,  0.88723069,  0.40824829],[-0.52058739,  0.24964395, -0.81649658],[-0.82633754, -0.38794278,  0.40824829]])
>>> s
array([1.68481034e+01, 1.06836951e+00, 4.41842475e-16])
>>> v
matrix([[-0.47967118, -0.57236779, -0.66506441],[-0.77669099, -0.07568647,  0.62531805],[-0.40824829,  0.81649658, -0.40824829]])
>>> u*np.diag(s)*v # 验证
matrix([[1., 2., 3.],[4., 5., 6.],[7., 8., 9.]])

函数向量化

>>> mat=np.matrix([[1,2,3],[4,5,6]])
>>> mat
matrix([[1, 2, 3],[4, 5, 6]])
>>> import math
>>> vecFactorial=np.vectorize(math.factorial) # 函数向量化
>>> vecFactorial(mat)
matrix([[  1,   2,   6],[ 24, 120, 720]])

相关内容

热门资讯

常用商务英语口语   商务英语是以适应职场生活的语言要求为目的,内容涉及到商务活动的方方面面。下面是小编收集的常用商务...
六年级上册英语第一单元练习题   一、根据要求写单词。  1.dry(反义词)__________________  2.writ...
复活节英文怎么说 复活节英文怎么说?复活节的英语翻译是什么?复活节:Easter;"Easter,anniversar...
2008年北京奥运会主题曲 2008年北京奥运会(第29届夏季奥林匹克运动会),2008年8月8日到2008年8月24日在中华人...
英语道歉信 英语道歉信15篇  在日常生活中,道歉信的使用频率越来越高,通过道歉信,我们可以更好地解释事情发生的...
六年级英语专题训练(连词成句... 六年级英语专题训练(连词成句30题)  1. have,playhouse,many,I,toy,i...
上班迟到情况说明英语   每个人都或多或少的迟到过那么几次,因为各种原因,可能生病,可能因为交通堵车,可能是因为天气冷,有...
小学英语教学论文 小学英语教学论文范文  引导语:英语教育一直都是每个家长所器重的,那么有关小学英语教学论文要怎么写呢...
英语口语学习必看的方法技巧 英语口语学习必看的方法技巧如何才能说流利的英语? 说外语时,我们主要应做到四件事:理解、回答、提问、...
四级英语作文选:Birth ... 四级英语作文范文选:Birth controlSince the Chinese Governmen...
金融专业英语面试自我介绍 金融专业英语面试自我介绍3篇  金融专业的学生面试时,面试官要求用英语做自我介绍该怎么说。下面是小编...
我的李老师走了四年级英语日记... 我的李老师走了四年级英语日记带翻译  我上了五个学期的小学却换了六任老师,李老师是带我们班最长的语文...
小学三年级英语日记带翻译捡玉... 小学三年级英语日记带翻译捡玉米  今天,我和妈妈去外婆家,外婆家有刚剥的`玉米棒上带有玉米籽,好大的...
七年级英语优秀教学设计 七年级英语优秀教学设计  作为一位兢兢业业的人民教师,常常要写一份优秀的教学设计,教学设计是把教学原...
我的英语老师作文 我的英语老师作文(通用21篇)  在日常生活或是工作学习中,大家都有写作文的经历,对作文很是熟悉吧,...
英语老师教学经验总结 英语老师教学经验总结(通用19篇)  总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成...
初一英语暑假作业答案 初一英语暑假作业答案  英语练习一(基础训练)第一题1.D2.H3.E4.F5.I6.A7.J8.C...
大学生的英语演讲稿 大学生的英语演讲稿范文(精选10篇)  使用正确的写作思路书写演讲稿会更加事半功倍。在现实社会中,越...
VOA美国之音英语学习网址 VOA美国之音英语学习推荐网址 美国之音网站已经成为语言学习最重要的资源站点,在互联网上还有若干网站...
商务英语期末试卷 Part I Term Translation (20%)Section A: Translate ...