位图/布隆过滤器/海量数据处理方式
创始人
2024-05-29 09:58:27
0

位图

位图的概念 

所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的。

直接来看问题:

给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在
这40亿个数中。

思路:解决问题的方法,可以使用位图来解决。把这40亿个数据映射在位图上,将位图上对应的比特位置为1。然后拿着需要判断的数在位图上看看其对应的比特位是否为1,如果是则存在,否则为0。

具体做法:

使用直接定址法,这40亿个数据的值是几,就把第几个比特位标记为1。因为40亿个整数,大概需要16G内存,而使用比特位,我们只需使用char作为存储在vector上的类型,每一个都是1bit大,因此在vector上开辟2^32大小的空间,表示数据大小范围,一共512M。

 开辟好空间后,开始将每一个数据映射到位图上。每一个char对象为8bit,于是让每一个值先确定自己在哪个char对象上,然后确定映射在哪个比特位上。

x映射的值,在第 x/8 个char对象上。

x映射的值,在第 x%8 个比特位上。

所以,我们可以根据上面的理论,用代码简单实现位图

使用非模板参数N,作为数据的个数。

开辟空间:空间开辟的大小为N /8 +1,因为N个数据,每8个为一组,多开辟一组,避免N不是8的整除。然后初始化为0。即位图上的比特位一开始全是0.

		//初始化空间,初始值为0bitset(){_bits.resize((N >> 3) + 1, 0);}

数据映射位图上的比特位:先计算好数据所在的组别和比特位的位置,然后将其置为1。置为1的操作是让这一个char对象组别的比特位与这个数据的比特位进行或运算。

		void set(size_t x){size_t i = x >> 3;//位于哪一个char对象上size_t j = x % 8;//位于这个char对象上的哪个比特位上_bits[i] |= (1 << j);//通过或运算,将x对应的比特位变为1}

将某个数据映射的比特位从1变回0:同样的找到这个位置后,然后这一组别的比特位与这个数据的比特取反后进行与运算。

		void reset(size_t x){size_t i = x >> 3;size_t j = x % 8;_bits[i] & = (~(1 << j));//通过与运算,让x对应的比特位变为0}

判断一共数据是是否存在:同样,先计算出这个数据映射的位置。然后返回这一组别跟这个数据的比特,然后进行与运算,注意不是与等,是不能改变原本位图的比特位的。

		//判断x是否存在,如果存在返回truebool test(size_t x){size_t i = x >> 3;size_t j = x % 8;return _bits[i] & (1 << j);}

完整代码如下:

namespace my_BitSet
{templateclass bitset{public://初始化空间,初始值为0bitset(){_bits.resize((N >> 3) + 1, 0);}void set(size_t x){size_t i = x >> 3;//位于哪一个char对象上size_t j = x % 8;//位于这个char对象上的哪个比特位上_bits[i] |= (1 << j);//通过或运算,将x对应的比特位变为1}void reset(size_t x){size_t i = x >> 3;size_t j = x % 8;_bits[i] & = (~(1 << j));//通过与运算,让x对应的比特位变为0}//判断x是否存在,如果存在返回truebool test(size_t x){size_t i = x >> 3;size_t j = x % 8;return _bits[i] & (1 << j);}private:vector _bits;};
}

布隆过滤器

位图对于判断大量数据中是否存在某一个数据的情况固然是好,其优点是节省空间和判断速度块。但其缺点是一般要求范围相对集中,如果范围特别分散,那么空间消耗就大了,而且是只针对整型。因此,布隆过滤器降临!

布隆过滤器的概念

布隆过滤器是一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中,因为布隆过滤器是哈希+位图的结合。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。

一般的位图下,每一个数据只跟位图产生一个映射点,而且只能用于整型。但布隆过滤器是每一个数据可以有N个映射点,N个映射点对应于N个哈希函数,这个是我们自己定义的。用哈希函数将非整型转化成整型。

 布隆过滤器的长度的计算方式:

使用公式:

 K为哈希函数的个数,m为布隆过滤器长度,n为数据的个数。假设K为3,而ln2约等于0.7,因此m==4.2n。

布隆过滤器的功能支持:

布隆过滤器支持set和test方法,最好不要有将1变回0的操作。因为这样会导致其它数据的判断的误差。如果真的要支持,就用计数的方法,但这种方法不推荐。

简单实现代码如下

这里使用3个哈希函数,分别为:BKDRHash、APHash和DJBHash。使用string为类型。

set方法:

		void set(const K& key){//通过不同的哈希函数,让同一个数据可以计算出三个不同的位置size_t hash1 = HashFunc1()(key) % (N * X);size_t hash2 = HashFunc2()(key) % (N * X);size_t hash3 = HashFunc3()(key) % (N * X);//计算出位置后,使用位图的set方法将位图上对应的比特位进行0变1_bs.set(hash1);_bs.set(hash2);_bs.set(hash3);}

test方法:

		bool test(cost K& key){//先逐个位置判断,如果它是0,直接返回falsesize_t hash1 = HashFunc1()(key) % (N * X);if (!_bs.test(hash1)){return false;}size_t hash2 = HashFunc2()(key) % (N * X);if (!_bs.test(hash2)){return false;}size_t hash3 = HashFunc3()(key) % (N * X);if (!_bs.test(hash3)){return false;}//直到最后,说明该数据是存在的,返回truereturn true;}

整体代码如下:

namespace my_BloomFilter
{struct BKDRHash{size_t operator()(const string& key){size_t hash = 0;for (auto ch : key){hash *= 131;hash += ch;}return hash;}};struct APHash{size_t operator()(const string& key){unsigned int hash = 0;int i = 0;for (auto ch : key){if ((i & 1) == 0){hash ^= ((hash << 7) ^ (ch) ^ (hash >> 3));}else{hash ^= (~((hash << 11) ^ (ch) ^ (hash >> 5)));}++i;}return hash;}};struct DJBHash{size_t operator()(const string& key){unsigned int hash = 5381;for (auto ch : key){hash += (hash << 5) + ch;}return hash;}};templateclass BloomFilter{public:void set(const K& key){//通过不同的哈希函数,让同一个数据可以计算出三个不同的位置size_t hash1 = HashFunc1()(key) % (N * X);size_t hash2 = HashFunc2()(key) % (N * X);size_t hash3 = HashFunc3()(key) % (N * X);//计算出位置后,使用位图的set方法将位图上对应的比特位进行0变1_bs.set(hash1);_bs.set(hash2);_bs.set(hash3);}bool test(cost K& key){//先逐个位置判断,如果它是0,直接返回falsesize_t hash1 = HashFunc1()(key) % (N * X);if (!_bs.test(hash1)){return false;}size_t hash2 = HashFunc2()(key) % (N * X);if (!_bs.test(hash2)){return false;}size_t hash3 = HashFunc3()(key) % (N * X);if (!_bs.test(hash3)){return false;}//直到最后,说明该数据是存在的,返回truereturn true;}private:std::bitset _bs;};
}

海量数据处理问题

哈希切割

给一个超过100G大小的log file, log中存着IP地址, 设计算法找到出现次数最多的IP地址?

超过100G大小的文件,肯定不能直接放到内存中,而是通过将它切割,分成很多份。那么如何去切割呢?是平均分成100份,每一份1G这样吗?

如果平均切割,那么会导致的问题是:如果文件中有好几个相同的值,且分布不集中,此时平均切割就很可能使一个IP有很多份在很多小文件中。

因此不能平均切割,需要的是哈希切割。哈希切割就是通过取模,让取模结果相同的数据放到同一份小文件里面。

哈希切割后,通过map来对每一个小文件进行统计。

小问题如果超过1G的问题:

①不重复的IP有很多个,map就需要很多节点,因此map是统计不下来的。

②重复的IP有很多个,map可以统计下来,因为节点不多。

解决方法:

先不看什么情况,直接用map统计,如果是第二种情况的话就直接统计下来了。但是第一种情况,会在insert的时候失败,因此可以在失败的时候捕捉异常,接着换哈希函数递归切分再统计即可。

位图的应用 

1.给定100亿个整数,设计算法找到只出现一次的整数?

只出现一次,那就说明,它在位图中比特位是:01。如果找到该位置发现是00或11或者其它的情况,那就不是。

但一个一般的位图只会出现单个比特,即要么是0,要么是1,不会出现两个比特。这里的方法使用两个位图的结构。即定义两个位图,然后用同一个数据计算出来的同一个位置,分别在这个两个位图上进行0和1的操作。

简单的代码实现:

	templateclass twobitset{public:void set(size_t x){//初次映射:两个位图对应的比特位都为0,即00if (!_bs1.test(x) && !_bs2.test(x)//  00{_bs2.set(x);//  01}else if (!_bs1.test(x) && _bs2.test(x) //  01{//第二次遇到这个数字后,此时是01的,要变成10_bs1.set(x); //11_bs2.reset(x); // 10}//如果第三次遇到,也不用管了,第二次遇到的时候就已经不是它了//10//11}void PrintOnce(){for (size_t i = 0; i < N; ++i){if (!_bs1.test(i) && _bs2.test(i))  // 01 出现一次{cout << i << endl;}}cout << endl;}private:bitset _bs1;bitset _bs2;};
}

 2.给两个文件,分别有100亿个整数,我们只有1G内存,如何找到两个文件交集?

这里提供两种思路:

思路1:先将一个文件的数据映射到位图中,然后用另外一个文件的数据去遍历,得到交集,需要注意去重。

思路2:分布将两文件映射到两个位图,然后通过两位图的与运算判断是否有交集。

3.位图应用变形:1个文件有100亿个int,1G内存,设计算法找到出现次数不超过2次的所有整数。

这道问题跟第一个问题基本一样,就是让“01”和"10"为需要找到的整数。如果出现"11"以上,那么就不行。

布隆过滤器的应用

1. 给两个文件,分别有100亿个query,我们只有1G内存,如何找到两个文件交集?分别给出精确算法和近似算法。

query是一般为一个查询指令,可能是一个网络请求的指令,也可能是一个数据库sql语句。

精确算法找文件交集的思路是:分别给两个文件创建布隆过滤器,然后让它们进行哈希切割,分成一个个小文件。最后通过编号相同的小文件中查找交集。

近似算法的思路是:将一个文件的数据映射到一个布隆过滤器中,然后另外一个文件去查找有没有相同的,有就是交集。这种算法会造成误判。

相关内容

热门资讯

常用商务英语口语   商务英语是以适应职场生活的语言要求为目的,内容涉及到商务活动的方方面面。下面是小编收集的常用商务...
六年级上册英语第一单元练习题   一、根据要求写单词。  1.dry(反义词)__________________  2.writ...
复活节英文怎么说 复活节英文怎么说?复活节的英语翻译是什么?复活节:Easter;"Easter,anniversar...
2008年北京奥运会主题曲 2008年北京奥运会(第29届夏季奥林匹克运动会),2008年8月8日到2008年8月24日在中华人...
英语道歉信 英语道歉信15篇  在日常生活中,道歉信的使用频率越来越高,通过道歉信,我们可以更好地解释事情发生的...
六年级英语专题训练(连词成句... 六年级英语专题训练(连词成句30题)  1. have,playhouse,many,I,toy,i...
上班迟到情况说明英语   每个人都或多或少的迟到过那么几次,因为各种原因,可能生病,可能因为交通堵车,可能是因为天气冷,有...
小学英语教学论文 小学英语教学论文范文  引导语:英语教育一直都是每个家长所器重的,那么有关小学英语教学论文要怎么写呢...
英语口语学习必看的方法技巧 英语口语学习必看的方法技巧如何才能说流利的英语? 说外语时,我们主要应做到四件事:理解、回答、提问、...
四级英语作文选:Birth ... 四级英语作文范文选:Birth controlSince the Chinese Governmen...
金融专业英语面试自我介绍 金融专业英语面试自我介绍3篇  金融专业的学生面试时,面试官要求用英语做自我介绍该怎么说。下面是小编...
我的李老师走了四年级英语日记... 我的李老师走了四年级英语日记带翻译  我上了五个学期的小学却换了六任老师,李老师是带我们班最长的语文...
小学三年级英语日记带翻译捡玉... 小学三年级英语日记带翻译捡玉米  今天,我和妈妈去外婆家,外婆家有刚剥的`玉米棒上带有玉米籽,好大的...
七年级英语优秀教学设计 七年级英语优秀教学设计  作为一位兢兢业业的人民教师,常常要写一份优秀的教学设计,教学设计是把教学原...
我的英语老师作文 我的英语老师作文(通用21篇)  在日常生活或是工作学习中,大家都有写作文的经历,对作文很是熟悉吧,...
英语老师教学经验总结 英语老师教学经验总结(通用19篇)  总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成...
初一英语暑假作业答案 初一英语暑假作业答案  英语练习一(基础训练)第一题1.D2.H3.E4.F5.I6.A7.J8.C...
大学生的英语演讲稿 大学生的英语演讲稿范文(精选10篇)  使用正确的写作思路书写演讲稿会更加事半功倍。在现实社会中,越...
VOA美国之音英语学习网址 VOA美国之音英语学习推荐网址 美国之音网站已经成为语言学习最重要的资源站点,在互联网上还有若干网站...
商务英语期末试卷 Part I Term Translation (20%)Section A: Translate ...