MATLAB——FFT(快速傅里叶变换)
创始人
2024-06-01 07:25:09
0

基础知识
FFT即快速傅里叶变换,利用周期性和可约性,减少了DFT的运算量。常见的有按时间抽取的基2算法(DIT-FFT)按频率抽取的基2算法(DIF-FFT)。

1.利用自带函数fft进行快速傅里叶变换
若已知序列x=[4,3,2,6,7,8,9,0]x=[4,3,2,6,7,8,9,0]x=[4,3,2,6,7,8,9,0],求X(k)=DFT[x(n)]X(k)=DFT[x(n)]X(k)=DFT[x(n)]
代码非常简单,只有两行

x=[4,3,2,6,7,8,9,0];
xk=fft(x)

在这里插入图片描述
一般,对MATLAB而言,要想让它显示出结果,计算的部分不要加分号。
2.绘制128点DFT的幅频图
已知信号由15Hz幅值0.5的正弦信号和40Hz幅值2的正弦信号组成,数据采样频率为100Hz,试绘制N=128点DFT的幅频图。
关于下列代码的解释

f=(0:N-1)'*fs/N;

其中(0:N-1)'是生成了一个长度为N,间隔为1的列向量转置所得到的行向量。fs/N是指频域上的频率间隔。
若N点序列x(n)(n=0,1,…,N-1)是在采样频率fs(Hz)下获得的。它的FFT也是N点序列,即X(k)(k=0,1,…,N-1),则第K点对应实际频率值为:
f=k*fs/N

clc;
fs=100;
Ts=1/fs;%采样时间间隔
N=128;
n=0:N-1;
t=n*Ts;    %x不是直接关于n的函数,因为是固定的采样时间点
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y=fft(x,N);
f=(0:N-1)'*fs/N;
stem(f,abs(y));

运行结果
在这里插入图片描述
同时也可以可看到这个幅度谱是关于fN对称的。
3.利用FFT进行功率谱的噪声分析
已知带有测量噪声信号x(t)=sin(2πf1t)+sin(2πf2t)+2w(t)x(t)=sin(2πf1t)+sin(2πf2t)+2w(t)x(t)=sin(2πf1t)+sin(2πf2t)+2w(t) 其中f1=50Hz,f2=120Hz, w(t)为均值为零、方差为1的随机信号,采样频率为1000Hz,数据点数N=512。试绘制信号的功率谱图。
下面先介绍几个基本的函数和知识:
conj(Y)
conj(Y) 是 MATLAB 中的一个函数,表示对 Y 中的每个元素取其共轭复数。如果 Y 是一个实数数组,则返回其本身。在信号处理中,常常使用共轭复数进行频域变换的处理。
求功率
P=Y.*conj(Y)/512;
注意这里是点乘啊。
在信号处理中,功率可以表示为信号的平均能量。对于一个离散时间信号,其能量可以表示为其幅度平方的总和,即:
E=∑n=0N−1∣x[n]∣2E = \sum_{n=0}^{N-1} |x[n]|^2 E=n=0∑N−1​∣x[n]∣2
其中,NNN 是信号的抽样点数,x[n]x[n]x[n] 是信号在时刻 nnn 的采样值。这里的 ∣x[n]∣2|x[n]|^2∣x[n]∣2 表示对 x[n]x[n]x[n] 取模长平方。
如果要计算信号的平均功率,可以将其总能量除以抽样点数,即:
P=EN=1N∑n=0N−1∣x[n]∣2P = \frac{E}{N} = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2 P=NE​=N1​n=0∑N−1​∣x[n]∣2
这里的 PPP 表示信号的功率。
在代码中,YYY 表示信号的离散傅里叶变换,即频域表示,其幅度 ∣Y∣|Y|∣Y∣ 表示信号在每个频率分量上的贡献。为了计算信号的功率谱,需要将 YYY 变换为其幅度平方,即 ∣Y∣2|Y|^2∣Y∣2。由于 YYY 中包含了正频率和负频率的信息,因此需要对其进行共轭操作,即将负频率部分取共轭复数,然后再与正频率部分相乘,即 Y⋅conj⁡(Y)Y \cdot \operatorname{conj}(Y)Y⋅conj(Y)。最后将结果除以抽样点数 NNN,即可得到功率谱 PPP:
P=Y⋅conj⁡(Y)NP = \frac{Y \cdot \operatorname{conj}(Y)}{N} P=NY⋅conj(Y)​
这里的 PPP 是一个长度为 NNN 的向量,表示信号在每个频率分量上的功率。
randn
andn是MATLAB中的一个函数,用于生成一个均值为0,方差为1的标准正态分布随机数。例如,可以使用以下代码生成一个大小为3x3的标准正态分布随机矩阵:
A = randn(3,3);
完整代码

clc;
t=0:0.001:0.6;%设置步进与时间区间
x=sin(2*pi*50*t)+sin(2*pi*120*t);%根据已知写出信号的表达式
noise=randn(1,length(t));%生成均值为零、方差为1的随机信号,也就是噪声
y=x+noise;%带有噪声的信号
subplot(121);
plot(t,y);fs=1000;
Y=fft(y,512);%512点的FFT
P=Y.*conj(Y)/512;%求功率
f=(0:255)*fs/256%由上面的分析可知,频谱关于奈奎斯特频率对称,所以取其中一半
subplot(122);
plot(f,P(1:256))%功率随频率的变化,即功率谱图,绘制出一半

运行结果:
在这里插入图片描述
4.序列长度和FFT的长度对信号频谱的影响
已知信号 x(t)=0.5sin(2πf1t)+2sin(2πf2t)x(t)=0.5sin(2πf1t)+2sin(2πf2t)x(t)=0.5sin(2πf1t)+2sin(2πf2t)
其中f1=15Hz,f2=40Hz,采样频率为100Hz.
在下列情况下绘制其幅频谱。
有了前面的基础,这里就比较简单了
代码

nlength=32;
nfft1=32;
nfft2=128;
fs=100;
Ts=1/fs;
n=0:nlength-1;
t=n*Ts;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y1=fft(x,nfft1);
f1=(0:31)*fs/32;
subplot(211);
Y1=abs(y1);
plot(f1(1:16),Y1(1:16));y2=fft(x,nfft2);
f2=(0:127)*fs/128;
subplot(212);
Y2=abs(y2);
plot(f2(1:64),Y2(1:64));

运行结果
在这里插入图片描述
结果分析
采样点数越多,其频谱越光滑。
注意
绘制图形的时候,一定要分析清楚是频谱图,还是某一个变换,其目的在于分清谁是因变量,谁是自变量。

相关内容

热门资讯

常用商务英语口语   商务英语是以适应职场生活的语言要求为目的,内容涉及到商务活动的方方面面。下面是小编收集的常用商务...
六年级上册英语第一单元练习题   一、根据要求写单词。  1.dry(反义词)__________________  2.writ...
复活节英文怎么说 复活节英文怎么说?复活节的英语翻译是什么?复活节:Easter;"Easter,anniversar...
2008年北京奥运会主题曲 2008年北京奥运会(第29届夏季奥林匹克运动会),2008年8月8日到2008年8月24日在中华人...
英语道歉信 英语道歉信15篇  在日常生活中,道歉信的使用频率越来越高,通过道歉信,我们可以更好地解释事情发生的...
六年级英语专题训练(连词成句... 六年级英语专题训练(连词成句30题)  1. have,playhouse,many,I,toy,i...
上班迟到情况说明英语   每个人都或多或少的迟到过那么几次,因为各种原因,可能生病,可能因为交通堵车,可能是因为天气冷,有...
小学英语教学论文 小学英语教学论文范文  引导语:英语教育一直都是每个家长所器重的,那么有关小学英语教学论文要怎么写呢...
英语口语学习必看的方法技巧 英语口语学习必看的方法技巧如何才能说流利的英语? 说外语时,我们主要应做到四件事:理解、回答、提问、...
四级英语作文选:Birth ... 四级英语作文范文选:Birth controlSince the Chinese Governmen...
金融专业英语面试自我介绍 金融专业英语面试自我介绍3篇  金融专业的学生面试时,面试官要求用英语做自我介绍该怎么说。下面是小编...
我的李老师走了四年级英语日记... 我的李老师走了四年级英语日记带翻译  我上了五个学期的小学却换了六任老师,李老师是带我们班最长的语文...
小学三年级英语日记带翻译捡玉... 小学三年级英语日记带翻译捡玉米  今天,我和妈妈去外婆家,外婆家有刚剥的`玉米棒上带有玉米籽,好大的...
七年级英语优秀教学设计 七年级英语优秀教学设计  作为一位兢兢业业的人民教师,常常要写一份优秀的教学设计,教学设计是把教学原...
我的英语老师作文 我的英语老师作文(通用21篇)  在日常生活或是工作学习中,大家都有写作文的经历,对作文很是熟悉吧,...
英语老师教学经验总结 英语老师教学经验总结(通用19篇)  总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成...
初一英语暑假作业答案 初一英语暑假作业答案  英语练习一(基础训练)第一题1.D2.H3.E4.F5.I6.A7.J8.C...
大学生的英语演讲稿 大学生的英语演讲稿范文(精选10篇)  使用正确的写作思路书写演讲稿会更加事半功倍。在现实社会中,越...
VOA美国之音英语学习网址 VOA美国之音英语学习推荐网址 美国之音网站已经成为语言学习最重要的资源站点,在互联网上还有若干网站...
商务英语期末试卷 Part I Term Translation (20%)Section A: Translate ...