L1正则化与L2正则化
创始人
2024-06-01 09:33:31
0

1.1-范数,2-范数

  • 1-范数:||X||_1=|x|_1+|x|_2+...+|x|_n
  • 2-范数:||X||_2 = (|x|_1^2+|x|_2^2+...+|x|_n^2)^{1/2}2-范数就是通常意义下的距离

2.L1和L2正则化

我们所说的正则化,就是在原来的loss function的基础上,加上了一些正则化项或者称为模型复杂度惩罚项。现在我们还是以最熟悉的线性回顾为例子。

  • 优化目标:

min\frac{1}{N}\sum_{i=1}^{N}{(y_i-w^Tx_i)}^2

  • 加上L1正则项

min\frac{1}{N}\sum_{i=1}^{N}{(y_i-w^Tx_i)}^2+C||w||_1

  • 加上L2正则项

min\frac{1}{N}\sum_{i=1}^{N}{(y_i-w^Tx_i)}^2+C||w||_2^2

我们的目标时使损失越小越好。

那加了L1正则化和L2正则化之后,对目标函数的求解有什么作用呢?

3.L1和L2正则化作用

假设X为一个二维样本,那么要求解的参数w也是二维:

  • 原函数曲线等高线(同颜色曲线上,每一组w1,w2带入值都相同)
图1 目标函数等高线
  • 加入L1和L2正则化的函数图像
图2 加入L1和L2正则的等高线

从上面两幅图中我们可以看出:

  • 如果不加L1和L2正则化的时候,对于线性回归这种目标函数凸函数的话,我们最终的结果就是最里面的紫色的小圈圈等高线上的点。
  • 当加入L1正则化的时候,我们先画出|w1|+|w2|=F的图像,也就是一个菱形,这些曲线上的点算出来的1范数|w1|+|w2|都为F。那现在的目标不仅是原曲线算的值要小,即越来越接近中心的紫色圆圈,还要使得这个菱形越来越小(F越来越小)。那么还和原来一样的化,过中心紫色圆圈的那个菱形明显很大,因此我们要取到一个恰好的值。那么如何求值呢?
图3 带L1正则化的目标函数求解

3.1 为什么说菱形和等高线相切的时候损失最小?

以原目标函数的曲线来说,在同一条等高线上,以最外圈的红色等高线为例。我们可以看到,对于红色曲线上的每个点都可以做一个菱形,根据上图3可知,当这个菱形和某条等高线相切的时候,这个菱形最小。

证明:同一等高线上的点能够使得\frac{1}{N}\sum_{i=1}^{N}(y_i-w^Tx_i)^2值相同,但是在相切的时候C||w||小,即|w1|+|w2|小,所以能够使得\frac{1}{N}\sum_{i=1}^{N}(y_i-w^Tx_i)^2+C||w||_1更小。

那么加入L1范数得到的解,一定是某个菱形和某条原函数等高线的切点。

3.2为什么加入L1正则化的解更容易稀疏?

我们可以观察到,几乎对于很多原函数等高线,和某个菱形相交的时候容易相交在坐标轴上,即最终结果解的某个维度极其容易为0,比如上图最终解释w=(0,x),这也就是我们所说的L1更容易得到稀疏解(解向量中0比较多)的原因。

证明:假设只有一个参数为w,损失函数为L(w),分别加上L1正则项和L2正则项后有:

J_{L1}(w)=L(w)+\lambda|w|

J_{L2}(w)=L(w)+\lambda|w|^2

假设L(w)在0处的导数为d_0,即

\frac{\partial L(w)}{\partial w}| _{w=0}=d_0

则可以推导使用L1正则和L2正则时的导数。

引入L2正则项,在0处的导数

\frac{\partial J_{L2}(w)}{\partial w}| _{w=0}=d_0+2*\lambda*w=d_0

引入L1正则项,在0处的导数

\frac{\partial J_{L1}(w)}{\partial w}| _{w=0^-}=d_0-\lambda

\frac{\partial J_{L1}(w)}{\partial w}| _{w=0^+}=d_0+\lambda

可见,引入L2正则时,代价函数在0处的导数仍然时d0,无变化。

而引入L1正则后,代价函数在0处的导数有一个突变。从d0+λ到d0-λ,如果d0+λ和d0-λ异号,则会在0处会是一个极小值。因此,优化时,很可能优化到该极小值点上,即w=0处。

这里只解释了有一个参数的情况,如果有更多的参数,也是类似的。因此,用L1正则更容易产生稀疏解。

3.3 加入L2正则化的结果

当加入L2正则化的时候,分析和L1正则化是类似的,也就是说我们仅仅是从菱形变成了圆形而已,同样还是求原曲线和圆形的切点作为最终解。当然与L1范数比,我们这样求得L2范数得从图上来看,不容易交在坐标轴上,但是仍然比较靠近坐标轴。因为这也就是我们经常说得,L2范数能让解比较小(靠近0),但是比较平滑(不等于0)

综上所述,我们可以看见,加入正则化项,在最小化经验误差得情况下,可以让我们选择解更简单(趋向于0)的解

从Bayes角度来看,L1,L2正则相当于对模型参数引入先验分布

  • L1正则:模型参数服从拉普拉斯分布,对参数加入分布约束,大部分取值为0.

特征选择:稀疏性(权值稀疏)

鲁棒性:忽略异常点

  • L2正则:模型参数服从高斯分布,对参数加了分布约束,大部分取值很小。

解决过拟合

易优化和计算(权值平滑)

稳定性好

对异常点敏感:误差取平方后放大。

稳定性比较解释

L1存在ill condition(病态)问题:输入发生微小变化导致输出发生很大改变。

对L1的病态问题大概理解一下,如上图所示,用批数据训练,每次批数据都会有稍稍不同的误差曲线。L2针对这种变动,白点的移动不会太大,而L1的白点则可能跳到许多不同的地方没因为这些地方的总误差都是差不多的。侧面说明了L1解的不稳定性。

https://www.cnblogs.com/lyxLearningNotes/p/16143387.html

L1 与 L2 正则化 - 简书

相关内容

热门资讯

常用商务英语口语   商务英语是以适应职场生活的语言要求为目的,内容涉及到商务活动的方方面面。下面是小编收集的常用商务...
六年级上册英语第一单元练习题   一、根据要求写单词。  1.dry(反义词)__________________  2.writ...
复活节英文怎么说 复活节英文怎么说?复活节的英语翻译是什么?复活节:Easter;"Easter,anniversar...
2008年北京奥运会主题曲 2008年北京奥运会(第29届夏季奥林匹克运动会),2008年8月8日到2008年8月24日在中华人...
英语道歉信 英语道歉信15篇  在日常生活中,道歉信的使用频率越来越高,通过道歉信,我们可以更好地解释事情发生的...
六年级英语专题训练(连词成句... 六年级英语专题训练(连词成句30题)  1. have,playhouse,many,I,toy,i...
上班迟到情况说明英语   每个人都或多或少的迟到过那么几次,因为各种原因,可能生病,可能因为交通堵车,可能是因为天气冷,有...
小学英语教学论文 小学英语教学论文范文  引导语:英语教育一直都是每个家长所器重的,那么有关小学英语教学论文要怎么写呢...
英语口语学习必看的方法技巧 英语口语学习必看的方法技巧如何才能说流利的英语? 说外语时,我们主要应做到四件事:理解、回答、提问、...
四级英语作文选:Birth ... 四级英语作文范文选:Birth controlSince the Chinese Governmen...
金融专业英语面试自我介绍 金融专业英语面试自我介绍3篇  金融专业的学生面试时,面试官要求用英语做自我介绍该怎么说。下面是小编...
我的李老师走了四年级英语日记... 我的李老师走了四年级英语日记带翻译  我上了五个学期的小学却换了六任老师,李老师是带我们班最长的语文...
小学三年级英语日记带翻译捡玉... 小学三年级英语日记带翻译捡玉米  今天,我和妈妈去外婆家,外婆家有刚剥的`玉米棒上带有玉米籽,好大的...
七年级英语优秀教学设计 七年级英语优秀教学设计  作为一位兢兢业业的人民教师,常常要写一份优秀的教学设计,教学设计是把教学原...
我的英语老师作文 我的英语老师作文(通用21篇)  在日常生活或是工作学习中,大家都有写作文的经历,对作文很是熟悉吧,...
英语老师教学经验总结 英语老师教学经验总结(通用19篇)  总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成...
初一英语暑假作业答案 初一英语暑假作业答案  英语练习一(基础训练)第一题1.D2.H3.E4.F5.I6.A7.J8.C...
大学生的英语演讲稿 大学生的英语演讲稿范文(精选10篇)  使用正确的写作思路书写演讲稿会更加事半功倍。在现实社会中,越...
VOA美国之音英语学习网址 VOA美国之音英语学习推荐网址 美国之音网站已经成为语言学习最重要的资源站点,在互联网上还有若干网站...
商务英语期末试卷 Part I Term Translation (20%)Section A: Translate ...