【深度强化学习】(4) Actor-Critic 模型解析,附Pytorch完整代码
创始人
2024-06-01 17:04:27
0

大家好,今天和各位分享一下深度强化学习中的 Actor-Critic 演员评论家算法,Actor-Critic 算法是一种综合了策略迭代和价值迭代的集成算法。我将使用该模型结合 OpenAI 中的 Gym 环境完成一个小游戏,完整代码可以从我的 GitHub 中获得:

https://github.com/LiSir-HIT/Reinforcement-Learning/tree/main/Model


1. 算法原理

根据 agent 选择动作方法的不同,可以把强化学习方法分为三大类:行动者方法(Actor-only),评论家方法(Critic-only),行动者评论家方法(Actor-critic)。

行动者方法中不会对值函数进行估计,直接按照当前策略和环境进行交互。通过交互后得到的立即奖赏值直接优化当前策略。例如:Policy Gradients

评论家方法没有需要维护的策略,评论家方法的策略是直接通过当前的值函数获得的,并通过值函数获得的策略与环境交互。交互得到的立即奖赏值用来优化当前值函数。例如:DQN

行动者评论家方法是由行动者和评论家两个部分构成。行动者用于选择动作评论家评论选择动作的好坏。行动者选择动作的方法不是依据当前的值函数,而是依据存储的策略。评论家的评论一般采用时间差分误差的形式,时间差分误差是根据当前的值函数计算获得的时间差分误差是是评论家的唯一输出,并且驱动了行动者和评论家之间的所有学习。


2. 公式推导

根据策略梯度算法的定义,策略优化目标函数如下:

L_\pi = \sum _{a\in A} log \pi_ \theta (s_t, a_t) (G_{t}^{n}-V(s_t))

令 ,A_t = G_t^n - V(s_t),称 A_t 为优势函数。采用 n 步时序差分法求解时,G_t 可以表示如下:

G_t = R_{t+1} + \gamma R_{t+2} + \cdots +\gamma ^{n-1}R_{t+n} + \gamma^nV(s_{t+n})

当 n 为一个完整的状态序列大小时,该算法与蒙特卡洛算法等价。

Actor-Critic 算法一共分为两个部分,Critic 和 Actor 网络。

Critic 是评判网络当输入为环境状态时,它可以评估当前状态的价值当输入为环境状态和采取的动作时,它可以评估当前状态下采取该动作的价值。

Actor 为策略网络以当前的状态作为输入,输出为动作的概率分布或者连续动作值再由 Critic 网络来评价该动作的好坏从而调整策略。Actor-Critic算法将动作价值评估和策略更新过程分开,Actor 可以对当前环境进行充分探索并缓慢进行策略更新Critic 只需要负责评价策略的好坏,所以这种集成算法有相对较好的性能。

Critic 网络的输入一般有两种形式,(1)如果输入为状态,则该评价网络的作用为评价当前状态价值(2)如果输入为状态和动作,则该评价网络的作用为评价当前状态的动作价值

如果评价网络 Critic 为状态价值 state value 的评价网络,输入为状态Critic 网络的损失函数计算公式采用均方误差损失函数,即 TD 误差值的累计平方值的均值,表达式如下:

L_{critic} = \frac{1}{N} \sum_{i}^{N} (G_t-V(s_t))

Actor 网络的优化目标可以如下:

L_{actor} = \frac{1}{N} \sum_{i}^{N} log \pi_\ast (s_t,a_t) (G_t-V(s_t))

其中,\pi_\ast 代表最优策略,由于该公式表达的含义为当 TD 误差值大于 0 时增强该动作选择概率当 TD 误差值小于 0 时减小该动作选择概率,所以目标为最小化损失函数 -L_{actor}

如果评价网络 Critic 为动作价值 action value 的评价网络,即输入为状态和动作,则Critic 网络的损失函数如下:

L_{critic} = \frac{1}{N} \sum_{i}^{N} (G_t - Q(s_t,a_t))^2

其中,G_t 的表达式变换如下:

G_t = R_{t+1} + \gamma R_{t+2} + \cdots +\gamma ^{n-1}R_{t+n} + \gamma^nQ(s_{t+n}, a_{t+n})

Actor-Critic 算法流程如下:


3. 代码实现

Actor-Critic 模型部分的实现方式如下:

import torch
from torch import nn
from torch.nn import functional as F
import numpy as np# ------------------------------------ #
# 策略梯度Actor,动作选择
# ------------------------------------ #class PolicyNet(nn.Module):def __init__(self, n_states, n_hiddens, n_actions):super(PolicyNet, self).__init__()self.fc1 = nn.Linear(n_states, n_hiddens)self.fc2 = nn.Linear(n_hiddens, n_actions)# 前向传播def forward(self, x):x = self.fc1(x)  # [b,n_states]-->[b,n_hiddens]x = F.relu(x)  x = self.fc2(x)  # [b,n_hiddens]-->[b,n_actions]# 每个状态对应的动作的概率x = F.softmax(x, dim=1)  # [b,n_actions]-->[b,n_actions]return x# ------------------------------------ #
# 值函数Critic,动作评估输出 shape=[b,1]
# ------------------------------------ #class ValueNet(nn.Module):def __init__(self, n_states, n_hiddens):super(ValueNet, self).__init__()self.fc1 = nn.Linear(n_states, n_hiddens)self.fc2 = nn.Linear(n_hiddens, 1)# 前向传播def forward(self, x):x = self.fc1(x)  # [b,n_states]-->[b,n_hiddens]x = F.relu(x)x = self.fc2(x)  # [b,n_hiddens]-->[b,1]return x# ------------------------------------ #
# Actor-Critic
# ------------------------------------ #class ActorCritic:def __init__(self, n_states, n_hiddens, n_actions,actor_lr, critic_lr, gamma):# 属性分配self.gamma = gamma# 实例化策略网络self.actor = PolicyNet(n_states, n_hiddens, n_actions)# 实例化价值网络self.critic = ValueNet(n_states, n_hiddens)# 策略网络的优化器self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)# 价值网络的优化器self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)# 动作选择def take_action(self, state):# 维度变换numpy[n_states]-->[1,n_sates]-->tensorstate = torch.tensor(state[np.newaxis, :])# 动作价值函数,当前状态下各个动作的概率probs = self.actor(state)# 创建以probs为标准类型的数据分布action_dist = torch.distributions.Categorical(probs)# 随机选择一个动作 tensor-->intaction = action_dist.sample().item()return action# 模型更新def update(self, transition_dict):# 训练集states = torch.tensor(transition_dict['states'], dtype=torch.float)actions = torch.tensor(transition_dict['actions']).view(-1,1)rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1,1)next_states = torch.tensor(transition_dict['next_states'], dtype=torch.float)dones = torch.tensor(transition_dict['dones'], dtype=torch.float).view(-1,1)# 预测的当前时刻的state_valuetd_value = self.critic(states)# 目标的当前时刻的state_valuetd_target = rewards + self.gamma * self.critic(next_states) * (1-dones)# 时序差分的误差计算,目标的state_value与预测的state_value之差td_delta = td_target - td_value# 对每个状态对应的动作价值用log函数log_probs = torch.log(self.actor(states).gather(1, actions))# 策略梯度损失actor_loss = torch.mean(-log_probs * td_delta.detach())# 值函数损失,预测值和目标值之间critic_loss = torch.mean(F.mse_loss(self.critic(states), td_target.detach()))# 优化器梯度清0self.actor_optimizer.zero_grad()  # 策略梯度网络的优化器self.critic_optimizer.zero_grad()  # 价值网络的优化器# 反向传播actor_loss.backward()critic_loss.backward()# 参数更新self.actor_optimizer.step()self.critic_optimizer.step()

4. 案例演示

我们使用 OpenAI 的 gym 库中的环境,完成一个小案例。我们的目的是左右移动黑色小车使得黄色的杆子保持竖直。状态 state 的维度为 4,动作 action 有 2 个。

环境交互与训练部分的代码如下:

import numpy as np
import matplotlib.pyplot as plt
import gym
import torch
from RL_brain import ActorCritic# ----------------------------------------- #
# 参数设置
# ----------------------------------------- #num_episodes = 100  # 总迭代次数
gamma = 0.9  # 折扣因子
actor_lr = 1e-3  # 策略网络的学习率
critic_lr = 1e-2  # 价值网络的学习率
n_hiddens = 16  # 隐含层神经元个数
env_name = 'CartPole-v1'
return_list = []  # 保存每个回合的return# ----------------------------------------- #
# 环境加载
# ----------------------------------------- #env = gym.make(env_name, render_mode="human")
n_states = env.observation_space.shape[0]  # 状态数 4
n_actions = env.action_space.n  # 动作数 2# ----------------------------------------- #
# 模型构建
# ----------------------------------------- #agent = ActorCritic(n_states=n_states,  # 状态数n_hiddens=n_hiddens,  # 隐含层数n_actions=n_actions,  # 动作数actor_lr=actor_lr,  # 策略网络学习率critic_lr=critic_lr,  # 价值网络学习率gamma=gamma)  # 折扣因子# ----------------------------------------- #
# 训练--回合更新
# ----------------------------------------- #for i in range(num_episodes):state = env.reset()[0]  # 环境重置done = False  # 任务完成的标记episode_return = 0  # 累计每回合的reward# 构造数据集,保存每个回合的状态数据transition_dict = {'states': [],'actions': [],'next_states': [],'rewards': [],'dones': [],}while not done:action = agent.take_action(state)  # 动作选择next_state, reward, done, _, _  = env.step(action)  # 环境更新# 保存每个时刻的状态\动作\...transition_dict['states'].append(state)transition_dict['actions'].append(action)transition_dict['next_states'].append(next_state)transition_dict['rewards'].append(reward)transition_dict['dones'].append(done)# 更新状态state = next_state# 累计回合奖励episode_return += reward# 保存每个回合的returnreturn_list.append(episode_return)# 模型训练agent.update(transition_dict)# 打印回合信息print(f'iter:{i}, return:{np.mean(return_list[-10:])}')# -------------------------------------- #
# 绘图
# -------------------------------------- #plt.plot(return_list)
plt.title('return')
plt.show()

绘制每回合的回报 return

相关内容

热门资讯

常用商务英语口语   商务英语是以适应职场生活的语言要求为目的,内容涉及到商务活动的方方面面。下面是小编收集的常用商务...
六年级上册英语第一单元练习题   一、根据要求写单词。  1.dry(反义词)__________________  2.writ...
复活节英文怎么说 复活节英文怎么说?复活节的英语翻译是什么?复活节:Easter;"Easter,anniversar...
2008年北京奥运会主题曲 2008年北京奥运会(第29届夏季奥林匹克运动会),2008年8月8日到2008年8月24日在中华人...
英语道歉信 英语道歉信15篇  在日常生活中,道歉信的使用频率越来越高,通过道歉信,我们可以更好地解释事情发生的...
六年级英语专题训练(连词成句... 六年级英语专题训练(连词成句30题)  1. have,playhouse,many,I,toy,i...
上班迟到情况说明英语   每个人都或多或少的迟到过那么几次,因为各种原因,可能生病,可能因为交通堵车,可能是因为天气冷,有...
小学英语教学论文 小学英语教学论文范文  引导语:英语教育一直都是每个家长所器重的,那么有关小学英语教学论文要怎么写呢...
英语口语学习必看的方法技巧 英语口语学习必看的方法技巧如何才能说流利的英语? 说外语时,我们主要应做到四件事:理解、回答、提问、...
四级英语作文选:Birth ... 四级英语作文范文选:Birth controlSince the Chinese Governmen...
金融专业英语面试自我介绍 金融专业英语面试自我介绍3篇  金融专业的学生面试时,面试官要求用英语做自我介绍该怎么说。下面是小编...
我的李老师走了四年级英语日记... 我的李老师走了四年级英语日记带翻译  我上了五个学期的小学却换了六任老师,李老师是带我们班最长的语文...
小学三年级英语日记带翻译捡玉... 小学三年级英语日记带翻译捡玉米  今天,我和妈妈去外婆家,外婆家有刚剥的`玉米棒上带有玉米籽,好大的...
七年级英语优秀教学设计 七年级英语优秀教学设计  作为一位兢兢业业的人民教师,常常要写一份优秀的教学设计,教学设计是把教学原...
我的英语老师作文 我的英语老师作文(通用21篇)  在日常生活或是工作学习中,大家都有写作文的经历,对作文很是熟悉吧,...
英语老师教学经验总结 英语老师教学经验总结(通用19篇)  总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成...
初一英语暑假作业答案 初一英语暑假作业答案  英语练习一(基础训练)第一题1.D2.H3.E4.F5.I6.A7.J8.C...
大学生的英语演讲稿 大学生的英语演讲稿范文(精选10篇)  使用正确的写作思路书写演讲稿会更加事半功倍。在现实社会中,越...
VOA美国之音英语学习网址 VOA美国之音英语学习推荐网址 美国之音网站已经成为语言学习最重要的资源站点,在互联网上还有若干网站...
商务英语期末试卷 Part I Term Translation (20%)Section A: Translate ...