(1)由双曲抛物面xy=z及平面x+y−1=0,z=0所围成的闭区域;(2)由曲面z=x2+y2及平面z=1所围成的闭区域;(3)由曲面z=x2+2y2及z=2−x2所围成的闭区域;(4)由曲面cz=xy(c>0),x2a2+y2b2=1,z=0所围成的在第一卦限内的闭区域.\begin{aligned} &\ \ (1)\ \ 由双曲抛物面xy=z及平面x+y-1=0,z=0所围成的闭区域;\\\\ &\ \ (2)\ \ 由曲面z=x^2+y^2及平面z=1所围成的闭区域;\\\\ &\ \ (3)\ \ 由曲面z=x^2+2y^2及z=2-x^2所围成的闭区域;\\\\ &\ \ (4)\ \ 由曲面cz=xy\ (c \gt 0),\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,z=0所围成的在第一卦限内的闭区域. & \end{aligned} (1) 由双曲抛物面xy=z及平面x+y−1=0,z=0所围成的闭区域; (2) 由曲面z=x2+y2及平面z=1所围成的闭区域; (3) 由曲面z=x2+2y2及z=2−x2所围成的闭区域; (4) 由曲面cz=xy (c>0),a2x2+b2y2=1,z=0所围成的在第一卦限内的闭区域.
(1)积分区域Ω的顶z=xy和底面z=0的交线为x轴和y轴,因此Ω在xOy面上的投影区域由x轴、y轴和直线x+y−1=0所围成,Ω可表示为0≤z≤xy,0≤y≤1−x,0≤x≤1,因此I=∫01dx∫01−xdy∫0xyf(x,y,z)dz.(2)由z=x2+y2和z=1得x2+y2=1,因此Ω在xOy面上的投影区域为x2+y2≤1,Ω可表示为x2+y2≤z≤1,−1−x2≤y≤1−x2,−1≤x≤1,因此I=∫−11dx∫−1−x21−x2dy∫x2+y21f(x,y,z)dz.\begin{aligned} &\ \ (1)\ 积分区域\Omega的顶z=xy和底面z=0的交线为x轴和y轴,因此\Omega在xOy面上的投影区域由x轴、y轴和\\\\ &\ \ \ \ \ \ \ \ 直线x+y-1=0所围成,\Omega可表示为0 \le z \le xy,0 \le y \le 1-x,0 \le x \le 1,因此\\\\ &\ \ \ \ \ \ \ \ I=\int_{0}^{1}dx\int_{0}^{1-x}dy\int_{0}^{xy}f(x, \ y, \ z)dz.\\\\ &\ \ (2)\ 由z=x^2+y^2和z=1得x^2+y^2=1,因此\Omega在xOy面上的投影区域为x^2+y^2 \le 1,\Omega可表示为\\\\ &\ \ \ \ \ \ \ \ x^2+y^2 \le z \le 1,-\sqrt{1-x^2} \le y \le \sqrt{1-x^2},-1 \le x \le 1,因此I=\int_{-1}^{1}dx\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}dy\int_{x^2+y^2}^{1}f(x, \ y, \ z)dz.\\\\ & \end{aligned} (1) 积分区域Ω的顶z=xy和底面z=0的交线为x轴和y轴,因此Ω在xOy面上的投影区域由x轴、y轴和 直线x+y−1=0所围成,Ω可表示为0≤z≤xy,0≤y≤1−x,0≤x≤1,因此 I=∫01dx∫01−xdy∫0xyf(x, y, z)dz. (2) 由z=x2+y2和z=1得x2+y2=1,因此Ω在xOy面上的投影区域为x2+y2≤1,Ω可表示为 x2+y2≤z≤1,−1−x2≤y≤1−x2,−1≤x≤1,因此I=∫−11dx∫−1−x21−x2dy∫x2+y21f(x, y, z)dz.
(3)由{z=x2+2y2z=2−x2,消去z,得x2+y2=1,所以Ω在xOy面上的投影区域为x2+y2≤1,Ω可表示为x2+2y2≤z≤2−x2,−1−x2≤y≤1−x2,−1≤x≤1,因此I=∫−11dx∫−1−x21−x2dy∫x2+2y22−x2f(x,y,z)dz.\begin{aligned} &\ \ (3)\ 由\begin{cases}z=x^2+2y^2\\\\z=2-x^2\end{cases},消去z,得x^2+y^2=1,所以\Omega在xOy面上的投影区域为x^2+y^2 \le 1,\Omega可表示为\\\\ &\ \ \ \ \ \ \ \ x^2+2y^2 \le z \le 2-x^2,-\sqrt{1-x^2} \le y \le \sqrt{1-x^2},-1 \le x \le 1,因此\\\\ &\ \ \ \ \ \ \ \ I=\int_{-1}^{1}dx\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}dy\int_{x^2+2y^2}^{2-x^2}f(x, \ y, \ z)dz.\\\\ & \end{aligned} (3) 由⎩⎪⎨⎪⎧z=x2+2y2z=2−x2,消去z,得x2+y2=1,所以Ω在xOy面上的投影区域为x2+y2≤1,Ω可表示为 x2+2y2≤z≤2−x2,−1−x2≤y≤1−x2,−1≤x≤1,因此 I=∫−11dx∫−1−x21−x2dy∫x2+2y22−x2f(x, y, z)dz.
(4)Ω在xOy面上的投影区域由椭圆x2a2+y2b2=1(x≥0,y≥0)和x轴、y轴所围成,Ω的顶为cz=xy,底为z=0,Ω可表示为0≤z≤xyc,0≤y≤b1−x2a2,0≤x≤a,因此I=∫0adx∫0b1−x2a2dy∫0xycf(x,y,z)dz.\begin{aligned} &\ \ (4)\ \Omega在xOy面上的投影区域由椭圆\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\ (x \ge 0,y \ge 0)和x轴、y轴所围成,\Omega的顶为cz=xy,底为z=0,\\\\ &\ \ \ \ \ \ \ \ \Omega可表示为0 \le z \le \frac{xy}{c},0 \le y \le b\sqrt{1-\frac{x^2}{a^2}},0 \le x \le a,因此I=\int_{0}^{a}dx\int_{0}^{b\sqrt{1-\frac{x^2}{a^2}}}dy\int_{0}^{\frac{xy}{c}}f(x, \ y, \ z)dz. & \end{aligned} (4) Ω在xOy面上的投影区域由椭圆a2x2+b2y2=1 (x≥0,y≥0)和x轴、y轴所围成,Ω的顶为cz=xy,底为z=0, Ω可表示为0≤z≤cxy,0≤y≤b1−a2x2,0≤x≤a,因此I=∫0adx∫0b1−a2x2dy∫0cxyf(x, y, z)dz.
M=∭Ωρdxdydz=∫01dx∫01dy∫01(x+y+z)dz=∫01dx∫01(x+y+12)dy=∫01(x+12+12)dx=32.\begin{aligned} &\ \ M=\iiint_{\Omega}\rho dxdydz=\int_{0}^{1}dx\int_{0}^{1}dy\int_{0}^{1}(x+y+z)dz=\int_{0}^{1}dx\int_{0}^{1}\left(x+y+\frac{1}{2}\right)dy=\int_{0}^{1}\left(x+\frac{1}{2}+\frac{1}{2}\right)dx=\frac{3}{2}. & \end{aligned} M=∭Ωρdxdydz=∫01dx∫01dy∫01(x+y+z)dz=∫01dx∫01(x+y+21)dy=∫01(x+21+21)dx=23.
∭Ωf(x,y,z)dxdydz=∫ab[∫cd(∫lmf1(x)f2(y)f3(z)dz)dy]dx=∫ab[∫cd(f1(x)f2(y)⋅∫lmf3(z)dz)dy]dx=∫ab[(∫lmf3(z)dz)⋅(∫cdf1(x)f2(y)dy)]dx=(∫lmf3(z)dz)⋅∫ab[f1(x)⋅∫cdf2(y)dy]dx=∫lmf3(z)dz⋅∫cdf2(y)dy⋅∫abf1(x)dx=∫abf1(x)dx∫cdf2(y)dy∫lmf3(z)dz\begin{aligned} &\ \ \iiint_{\Omega}f(x, \ y, \ z)dxdydz=\int_{a}^{b}\left[\int_{c}^{d}\left(\int_{l}^{m}f_1(x)f_2(y)f_3(z)dz\right)dy\right]dx=\int_{a}^{b}\left[\int_{c}^{d}\left(f_1(x)f_2(y)\cdot \int_{l}^{m}f_3(z)dz\right)dy\right]dx=\\\\ &\ \ \int_{a}^{b}\left[\left(\int_{l}^{m}f_3(z)dz\right)\cdot\left(\int_{c}^{d}f_1(x)f_2(y)dy\right)\right]dx=\left(\int_{l}^{m}f_3(z)dz\right)\cdot \int_{a}^{b}\left[f_1(x)\cdot \int_{c}^{d}f_2(y)dy\right]dx=\\\\ &\ \ \int_{l}^{m}f_3(z)dz\cdot \int_{c}^{d}f_2(y)dy\cdot \int_{a}^{b}f_1(x)dx=\int_{a}^{b}f_1(x)dx\int_{c}^{d}f_2(y)dy\int_{l}^{m}f_3(z)dz & \end{aligned} ∭Ωf(x, y, z)dxdydz=∫ab[∫cd(∫lmf1(x)f2(y)f3(z)dz)dy]dx=∫ab[∫cd(f1(x)f2(y)⋅∫lmf3(z)dz)dy]dx= ∫ab[(∫lmf3(z)dz)⋅(∫cdf1(x)f2(y)dy)]dx=(∫lmf3(z)dz)⋅∫ab[f1(x)⋅∫cdf2(y)dy]dx= ∫lmf3(z)dz⋅∫cdf2(y)dy⋅∫abf1(x)dx=∫abf1(x)dx∫cdf2(y)dy∫lmf3(z)dz
Ω可表示为0≤z≤xy,0≤y≤x,0≤x≤1,因此∭Ωxy2z3dxdydz=∫01xdx∫0xy2dy∫0xyz3dz=14∫01xdx∫0xx4y6dy=128∫01x12dx=1364.\begin{aligned} &\ \ \Omega可表示为0 \le z \le xy,0 \le y \le x,0 \le x \le 1,因此\iiint_{\Omega}xy^2z^3dxdydz=\int_{0}^{1}xdx\int_{0}^{x}y^2dy\int_{0}^{xy}z^3dz=\\\\ &\ \ \frac{1}{4}\int_{0}^{1}xdx\int_{0}^{x}x^4y^6dy=\frac{1}{28}\int_{0}^{1}x^{12}dx=\frac{1}{364}. & \end{aligned} Ω可表示为0≤z≤xy,0≤y≤x,0≤x≤1,因此∭Ωxy2z3dxdydz=∫01xdx∫0xy2dy∫0xyz3dz= 41∫01xdx∫0xx4y6dy=281∫01x12dx=3641.
Ω={(x,y,z)∣0≤z≤1−x−y,0≤y≤1−x,0≤x≤1},则∭Ωdxdydz(1+x+y+z)3=∫01dx∫01−xdy∫01−x−ydz(1+x+y+z)3=∫01dx∫01−x[−12(1+x+y+z)2]01−x−ydy=∫01dx∫01−x[−18+12(1+x+y)2]dy=∫01[−y8−12(1+x+y)]01−xdx=−∫01[1−x8+14−12(1+x)]dx=12(ln2−58)\begin{aligned} &\ \ \Omega=\{(x, \ y, \ z)\ |\ 0 \le z \le 1-x-y,0 \le y \le 1-x,0 \le x \le 1\},则\iiint_{\Omega}\frac{dxdydz}{(1+x+y+z)^3}=\\\\ &\ \ \int_{0}^{1}dx\int_{0}^{1-x}dy\int_{0}^{1-x-y}\frac{dz}{(1+x+y+z)^3}=\int_{0}^{1}dx\int_{0}^{1-x}\left[\frac{-1}{2(1+x+y+z)^2}\right]_{0}^{1-x-y}dy=\\\\ &\ \ \int_{0}^{1}dx\int_{0}^{1-x}\left[-\frac{1}{8}+\frac{1}{2(1+x+y)^2}\right]dy=\int_{0}^{1}\left[-\frac{y}{8}-\frac{1}{2(1+x+y)}\right]_{0}^{1-x}dx=-\int_{0}^{1}\left[\frac{1-x}{8}+\frac{1}{4}-\frac{1}{2(1+x)}\right]dx=\\\\ &\ \ \frac{1}{2}\left(ln\ 2-\frac{5}{8}\right) & \end{aligned} Ω={(x, y, z) ∣ 0≤z≤1−x−y,0≤y≤1−x,0≤x≤1},则∭Ω(1+x+y+z)3dxdydz= ∫01dx∫01−xdy∫01−x−y(1+x+y+z)3dz=∫01dx∫01−x[2(1+x+y+z)2−1]01−x−ydy= ∫01dx∫01−x[−81+2(1+x+y)21]dy=∫01[−8y−2(1+x+y)1]01−xdx=−∫01[81−x+41−2(1+x)1]dx= 21(ln 2−85)
Ω={(x,y,z)∣0≤z≤1−x2−y2,0≤y≤1−x2,0≤x≤1},因此∭Ωxyzdxdydz=∫01xdx∫01−x2ydy∫01−x2−y2zdz=∫01xdx∫01−x2y⋅1−x2−y22dy=12∫01x[y22(1−x2)−y44]01−x2dx=18∫01x(1−x2)2dx=148\begin{aligned} &\ \ \Omega=\{(x, \ y, \ z)\ |\ 0 \le z \le \sqrt{1-x^2-y^2},0 \le y \le \sqrt{1-x^2},0 \le x \le 1\},因此\iiint_{\Omega}xyzdxdydz=\\\\ &\ \ \int_{0}^{1}xdx\int_{0}^{\sqrt{1-x^2}}ydy\int_{0}^{\sqrt{1-x^2-y^2}}zdz=\int_{0}^{1}xdx\int_{0}^{\sqrt{1-x^2}}y \cdot \frac{1-x^2-y^2}{2}dy=\frac{1}{2}\int_{0}^{1}x\left[\frac{y^2}{2}(1-x^2)-\frac{y^4}{4}\right]_{0}^{\sqrt{1-x^2}}dx=\\\\ &\ \ \frac{1}{8}\int_{0}^{1}x(1-x^2)^2dx=\frac{1}{48} & \end{aligned} Ω={(x, y, z) ∣ 0≤z≤1−x2−y2,0≤y≤1−x2,0≤x≤1},因此∭Ωxyzdxdydz= ∫01xdx∫01−x2ydy∫01−x2−y2zdz=∫01xdx∫01−x2y⋅21−x2−y2dy=21∫01x[2y2(1−x2)−4y4]01−x2dx= 81∫01x(1−x2)2dx=481
Ω的顶为平面z=y,底为平面z=0,Ω在xOy面上的投影区域Dxy由y=1和y=x2所围成,Ω可表示为0≤z≤y,x2≤y≤1,−1≤x≤1,因此∭Ωxzdxdydz=∫−11xdx∫x21dy∫0yzdz=∫−11xdx∫x21y22dy=16∫−11x(1−x6)dx=0.\begin{aligned} &\ \ \Omega的顶为平面z=y,底为平面z=0,\Omega在xOy面上的投影区域D_{xy}由y=1和y=x^2所围成,\Omega可表示为\\\\ &\ \ 0 \le z \le y,x^2 \le y \le 1,-1 \le x \le 1,因此\iiint_{\Omega}xzdxdydz=\int_{-1}^{1}xdx\int_{x^2}^{1}dy\int_{0}^{y}zdz=\int_{-1}^{1}xdx\int_{x^2}^{1}\frac{y^2}{2}dy=\\\\ &\ \ \frac{1}{6}\int_{-1}^{1}x(1-x^6)dx=0. & \end{aligned} Ω的顶为平面z=y,底为平面z=0,Ω在xOy面上的投影区域Dxy由y=1和y=x2所围成,Ω可表示为 0≤z≤y,x2≤y≤1,−1≤x≤1,因此∭Ωxzdxdydz=∫−11xdx∫x21dy∫0yzdz=∫−11xdx∫x212y2dy= 61∫−11x(1−x6)dx=0.
由z=hRx2+y2与z=h得x2+y2=R2,则Ω在xOy面上的投影区域Dxy={(x,y)∣x2+y2≤R2},Ω={(x,y,z)∣hRx2+y2≤z≤h,(x,y)∈Dxy},因此∭Ωzdxdydz=∬Dxydxdy∫hRx2+y2hzdz=12∬Dxy[h2−h2R2(x2+y2)]dxdy=12[h2∬Dxydxdy−h2R2∬Dxy(x2+y2)dxdy]=h22⋅πR2−h22R2∫02πdθ∫0Rρ3dρ=14πR2h2.\begin{aligned} &\ \ 由z=\frac{h}{R}\sqrt{x^2+y^2}与z=h得x^2+y^2=R^2,则\Omega在xOy面上的投影区域D_{xy}=\{(x, \ y)\ |\ x^2+y^2 \le R^2\},\\\\ &\ \ \Omega=\left\{(x, \ y, \ z)\ \bigg|\ \frac{h}{R}\sqrt{x^2+y^2}\le z \le h,(x, \ y) \in D_{xy}\right\},因此\iiint_{\Omega}zdxdydz=\iint_{D_{xy}}dxdy\int_{\frac{h}{R}\sqrt{x^2+y^2}}^{h}zdz=\\\\ &\ \ \frac{1}{2}\iint_{D_{xy}}\left[h^2-\frac{h^2}{R^2}(x^2+y^2)\right]dxdy=\frac{1}{2}\left[h^2\iint_{D_{xy}}dxdy-\frac{h^2}{R^2}\iint_{D_{xy}}(x^2+y^2)dxdy\right]=\\\\ &\ \ \frac{h^2}{2}\cdot \pi R^2-\frac{h^2}{2R^2}\int_{0}^{2\pi}d\theta \int_{0}^{R}\rho^3d\rho=\frac{1}{4}\pi R^2h^2. & \end{aligned} 由z=Rhx2+y2与z=h得x2+y2=R2,则Ω在xOy面上的投影区域Dxy={(x, y) ∣ x2+y2≤R2}, Ω={(x, y, z) ∣∣∣∣ Rhx2+y2≤z≤h,(x, y)∈Dxy},因此∭Ωzdxdydz=∬Dxydxdy∫Rhx2+y2hzdz= 21∬Dxy[h2−R2h2(x2+y2)]dxdy=21[h2∬Dxydxdy−R2h2∬Dxy(x2+y2)dxdy]= 2h2⋅πR2−2R2h2∫02πdθ∫0Rρ3dρ=41πR2h2.
(1)∭Ωzdv,其中Ω是由曲面z=2−x2−y2及z=x2+y2所围成的闭区域;(2)∭Ω(x2+y2)dv,其中Ω是由曲面x2+y2=2z及平面z=2所围成的闭区域.\begin{aligned} &\ \ (1)\ \ \iiint_{\Omega}zdv,其中\Omega是由曲面z=\sqrt{2-x^2-y^2}及z=x^2+y^2所围成的闭区域;\\\\ &\ \ (2)\ \ \iiint_{\Omega}(x^2+y^2)dv,其中\Omega是由曲面x^2+y^2=2z及平面z=2所围成的闭区域. & \end{aligned} (1) ∭Ωzdv,其中Ω是由曲面z=2−x2−y2及z=x2+y2所围成的闭区域; (2) ∭Ω(x2+y2)dv,其中Ω是由曲面x2+y2=2z及平面z=2所围成的闭区域.
(1)由z=2−x2−y2和z=x2+y2得(x2+y2)2=2−(x2+y2),即x2+y2=1,可知Ω在xOy面上的投影区域Dxy={(x,y)∣x2+y2≤1},利用柱面坐标,Ω表示为ρ2≤z≤2−ρ2,0≤ρ≤1,0≤θ≤2π,因此∭Ωzdv=∭Ωzρdρdθdz=∫02πdθ∫01ρdρ∫ρ22−ρ2zdz=12∫02πdθ∫01ρ(2−ρ2−ρ4)dρ=12⋅2π[ρ2−ρ44−ρ66]01=712π.\begin{aligned} &\ \ (1)\ 由z=\sqrt{2-x^2-y^2}和z=x^2+y^2得(x^2+y^2)^2=2-(x^2+y^2),即x^2+y^2=1,可知\Omega在xOy面上的投影区域\\\\ &\ \ \ \ \ \ \ \ D_{xy}=\{(x, \ y)\ |\ x^2+y^2 \le 1\},利用柱面坐标,\Omega表示为\rho^2 \le z \le \sqrt{2-\rho^2},0 \le \rho \le 1,0 \le \theta \le 2\pi,因此\\\\ &\ \ \ \ \ \ \ \ \iiint_{\Omega}zdv=\iiint_{\Omega}z\rho d\rho d\theta dz=\int_{0}^{2\pi}d\theta \int_{0}^{1}\rho d\rho\int_{\rho^2}^{\sqrt{2-\rho^2}}zdz=\frac{1}{2}\int_{0}^{2\pi}d\theta \int_{0}^{1}\rho(2-\rho^2-\rho^4)d\rho=\\\\ &\ \ \ \ \ \ \ \ \frac{1}{2}\cdot 2\pi \left[\rho^2-\frac{\rho^4}{4}-\frac{\rho^6}{6}\right]_{0}^{1}=\frac{7}{12}\pi.\\\\ & \end{aligned} (1) 由z=2−x2−y2和z=x2+y2得(x2+y2)2=2−(x2+y2),即x2+y2=1,可知Ω在xOy面上的投影区域 Dxy={(x, y) ∣ x2+y2≤1},利用柱面坐标,Ω表示为ρ2≤z≤2−ρ2,0≤ρ≤1,0≤θ≤2π,因此 ∭Ωzdv=∭Ωzρdρdθdz=∫02πdθ∫01ρdρ∫ρ22−ρ2zdz=21∫02πdθ∫01ρ(2−ρ2−ρ4)dρ= 21⋅2π[ρ2−4ρ4−6ρ6]01=127π.
(2)由x2+y2=2z及z=2得x2+y2=4,可知Ω在xOy面上的投影区域Dxy={(x,y)∣x2+y2≤4},利用柱面坐标,Ω表示为ρ22≤z≤2,0≤ρ≤2,0≤θ≤2π,因此∭Ω(x2+y2)dv=∭Ωρ2⋅ρdρdθdz=∫02πdθ∫02ρ3dρ∫ρ222dz=∫02πdθ∫02ρ3(2−ρ22)dρ=2π[ρ42−ρ612]02=163π.\begin{aligned} &\ \ (2)\ 由x^2+y^2=2z及z=2得x^2+y^2=4,可知\Omega在xOy面上的投影区域D_{xy}=\{(x, \ y)\ |\ x^2+y^2 \le 4\},\\\\ &\ \ \ \ \ \ \ \ 利用柱面坐标,\Omega表示为\frac{\rho^2}{2} \le z \le 2,0 \le \rho \le 2,0 \le \theta \le 2\pi,因此\iiint_{\Omega}(x^2+y^2)dv=\\\\ &\ \ \ \ \ \ \ \ \iiint_{\Omega}\rho^2\cdot \rho d\rho d\theta dz=\int_{0}^{2\pi}d\theta \int_{0}^{2}\rho^3 d\rho \int_{\frac{\rho^2}{2}}^{2}dz=\int_{0}^{2\pi}d\theta \int_{0}^{2}\rho^3\left(2-\frac{\rho^2}{2}\right)d\rho=2\pi \left[\frac{\rho^4}{2}-\frac{\rho^6}{12}\right]_{0}^{2}=\frac{16}{3}\pi. & \end{aligned} (2) 由x2+y2=2z及z=2得x2+y2=4,可知Ω在xOy面上的投影区域Dxy={(x, y) ∣ x2+y2≤4}, 利用柱面坐标,Ω表示为2ρ2≤z≤2,0≤ρ≤2,0≤θ≤2π,因此∭Ω(x2+y2)dv= ∭Ωρ2⋅ρdρdθdz=∫02πdθ∫02ρ3dρ∫2ρ22dz=∫02πdθ∫02ρ3(2−2ρ2)dρ=2π[2ρ4−12ρ6]02=316π.
上一篇: 此处,应有掌声五年级作文(精彩3篇)
下一篇: 可爱的家五年级作文【推荐6篇】