【论文阅读 WWW‘23】Zero-shot Clarifying Question Generation for Conversational Search
创始人
2024-05-29 01:08:15
0

文章目录

  • 前言
  • Motivation
  • Contributions
  • Method
    • Facet-constrained Question Generation
    • Multiform Question Prompting and Ranking
  • Experiments
  • Dataset
  • Result
    • Auto-metric evaluation
    • Human evaluation
  • Knowledge

前言

  • 最近对一些之前的文章进行了重读,因此整理了之前的笔记
  • 理解不当之处,请多多指导
  • 概括:本文利用facet word,基于 GPT-2 进行了 zero-shot 的限制生成,使生成的问题更容易包含facet word。同时利用了prompt,使用8种模板,对每个模板都生成一个结果,然后使用一些排序算法自动挑选出一个最终结果。
  • 更多论文可见:ShiyuNee/Awesome-Conversation-Clarifying-Questions-for-Information-Retrieval: Papers about Conversation and Clarifying Questions (github.com)

Motivation

Generate clarifying questions in a zero-shot setting to overcome the cold start problem and data bias.

cold start problem: 缺少数据导致难应用,难应用导致缺少数据

data bias: 获得包括所有可能topic的监督数据不现实,在这些数据上训练也会有 bias

Contributions

  • the first to propose a zero-shot clarifying question generation system, which attempts to address the cold-start challenge of asking clarifying questions in conversational search.
  • the first to cast clarifying question generation as a constrained language generation task and show the advantage of this configuration.
  • We propose an auxiliary evaluation strategy for clarifying question generations, which removes the information-scarce question templates from both generations and references.

Method

Backbone: a checkpoint of GPT-2

  • original inference objective is to predict the next token given all previous texts

在这里插入图片描述

Directly append the query qqq and facet fff as input and let GPT-2 generate cq will cause two challenges:

  • it does not necessarily cover facets in the generation.
  • the generated sentences are not necessarily in the tone of clarifying questions

We divide our system into two parts:

  • facet-constrained question generation(tackle the first challenge)
  • multi-form question prompting and ranking(tackle the second challenge, rank different clarifying questions generated by different templates)

Facet-constrained Question Generation

Our model utilizes the facet words not as input but as constraints. We employ an algorithm called Neurologic Decoding. Neurologic Decoding is based on beam search.

  • in ttt​ step, assuming the already generated candidates in the beam are 𝐶={𝑐1:𝑘}𝐶 = \{𝑐_{1:𝑘} \}C={c1:k​}, kkk is the beam size, ci=x1:(t−1)ic_i=x^i_{1:(t-1)}ci​=x1:(t−1)i​ is the iii th candidate, x1:(t−1)ix^i_{1:(t-1)}x1:(t−1)i​ are tokens generated from decoding step 1 to (t−1)(t-1)(t−1)

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-98Ld4wAG-1678024307327)在这里插入图片描述

    • explain about why this method could better constrain the decoder to generate facet-related questions:
      • (2)top−β(2)top- \beta(2)top−β​ is the main reason for promoting facet words in generations. Because of this filtering, Neurologic Decoding tends to discard generations with fewer facet words regardless of their generation probability
      • (3)(3)(3)​ the group is the key for Neurologic Decoding to explore as many branches as possible. Because this grouping method keeps the most cases $(2^{| 𝑓 |} ) $of facet word inclusions, allowing the decoder to cover the most possibilities of ordering constraints in generation
        • because if we choose top K candidates directly, there may be some candidates containing same facets, this results in less situation containing diverse facets. Towards choosing the best candidate in each group and then choose top K candidates, every candidate will contain different facets.

Multiform Question Prompting and Ranking

Use clarifying question templates as the starting text of the generation and let the decoder generate the rest of question body.

  • if the qqq is “I am looking for information about South Africa.” Then we give the decoder “I am looking for information about South Africa. [SEP] would you like to know” as input and let it generate the rest.
  • we use multiple prompts(templates) to both cover more ways of clarification and avoid making users bored

For each query, we will append these eight prompts to the query and form eight input and generate eight questions.

  • use ranking methods to choose the best one as the returned question

Experiments

Zero-shot clarifying question generation with existing baselines

  • Q-GPT-0
    • input: query
  • QF-GPT-0:
    • input: facet + query
  • Prompt-based GPT-0: includes a special instructional prompt as input
    • input: q “Ask a question that contains words in the list [f]”
  • Template-0: a template-guided approach using GPT-2
    • input: add the eight question templates during decoding and generate the rest of the question

Existing facet-driven baselines(finetuned):

  • Template-facet: append the facet word right after the question template

在这里插入图片描述

  • QF-GPT: a GPT-2 finetuning version of QF-GPT-0.
    • finetunes on a set of tuples in the form as f [SEP] q [BOS] cq [EOS]
  • Prompt-based finetuned GPT: a finetuning version of Prompt-based GPT-0
    • finetune GPT-2 with the structure: 𝑞 “Ask a question that contains words in the list [𝑓 ].” 𝑐𝑞

Note: simple facets-input finetuning is highly inefficient in informing the decoder to generate facet-related questions by observing a facet coverage rate of only 20%

Dataset

ClariQ-FKw: has rows of (q,f,cq) tuples.

  • q is an open-domain search query, f is a search facet, cq is a human-generated clarifying question
  • The facet inClariQ is in the form of a faceted search query. ClariQ-FKw extracts the keyword of the faceted query as its facet column and samples a dataset with 1756 training examples and 425 evaluation examples

Our proposed system does not access the training set while the other supervised learning systems can access the training set for finetuning.

Result

Auto-metric evaluation

在这里插入图片描述

RQ1: How well can we do in zero-shot clarifying question generation with existing baselines

  • all these baselines(the first four rows) struggle to produce any reasonable generations except for Template-0(but it’s question body is not good)
  • we find existing zero-shot GPT-2-based approaches cannot solve the clarifying question generation task effectively.

RQ2: the effectiveness of facet information for facet-specific clarifying question generation

  • compare our proposed zero-shot facet constrained (ZSFC) methods with a facet-free variation of ZSFC named Subject-constrained which uses subject of the query as constraints.
  • our study show that adequate use of facet information can significantly improve clarifying question generation quality

RQ3: whether our proposed zeroshot approach can perform the same or even better than existing facet-driven baselines

  • We see that from both tables, our zero-shot facet-driven approaches are always better than the finetuning baselines

Note: Template-facet rewriting is a simple yet strong baseline that both finetuning-based methods are actually worse than it.

Human evaluation

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5eC8PWul-1678024307328)在这里插入图片描述

Knowledge

Approaches to clarifying query ambiguity can be roughly divided into three categories:

  • Query Reformulation: iteratively refine the query
    • is more efficient in context-rich situations
  • Query Suggestion: offer related queries to the user
    • is good for leading search topics, discovering user needs
  • Asking Clarifying Questions: proactively engages users to provide additional context.
    • could be exclusively helpful to clarify ambiguous queries without context.

相关内容

热门资讯

母亲的生日祝寿词 母亲的生日祝寿词春天像一个风华正茂的少女,迈着轻盈的脚步,如期而至。在这如花似玉的`季节里,今天,我...
幼儿园元旦文艺汇演流程主持词 幼儿园元旦文艺汇演流程主持词  A:谁将平地万秋叶,剪刻做此连天花?  C:秋爽天地显繁华,某园爱意...
主持稿开场白 主持稿开场白  一、什么是主持词  主持词,又叫串连词,串联词,串词。主持词是在晚会、联欢会等大型联...
《熊出没》中的经典台词 《熊出没》中的经典台词  在学习、工作生活中,用到台词的地方越来越多,台词是剧作者用以展示剧情,刻画...
军训开幕式致辞 军训开幕式致辞  在平平淡淡的学习、工作、生活中,大家对致辞都再熟悉不过了吧,致辞受场合、事件的限制...
学校拜师仪式主持词 学校拜师仪式主持词  导读:由主持人于节目进行过程中串联节目的串联词。如今的各种演出活动和集会中,主...
婚礼主持人致辞 婚礼主持人致辞(精选6篇)  在我们平凡的日常里,大家或多或少都用到过致辞吧,致辞具有针对性,要认清...
校园活动主持词 校园活动主持词  【导语】不论是会议还是晚会等活动都需要主持人和主持词,好的主持稿对会议的气氛会起到...
公司酒会主持词 公司酒会主持词  根据活动对象的不同,需要设置不同的主持词。在一步步向前发展的社会中,主持成为很多活...
感恩的心串词21篇 感恩的心串词21篇  一、串词的构成要素  1、思想的深刻性;  2、知识的广泛性;  3、宣传主题...
闭幕式主持词 【必备】闭幕式主持词3篇  借鉴诗词和散文诗是主持词的一种写作手法。在当今社会生活中,主持成为很多活...
简短的上台领奖致感谢词 简短的上台领奖致感谢词(精选5篇)  获奖能在台上致感谢,不仅是一份荣誉,更是一份激励。以下是小编为...
读书会的主持词 关于读书会的主持词  主持词分为会议主持词、晚会主持词、活动主持词、婚庆主持词等。在各种集会、活动不...
档案培训班开班仪式主持词   档案管理培训班开班仪式主持词  (请大家安静,我们现在举行培训班开班仪式)  各位领导,各位学员...
学校教师团拜会主持词 学校教师团拜会主持词  主持词是主持人在节目进行过程中用于串联节目的串联词。在现今人们越来越重视活动...
培训开班仪式致辞 培训开班仪式致辞(精选19篇)  无论是在学校还是在社会中,大家肯定对各类致辞都很熟悉吧,致辞是指在...
舞蹈串烧节目主持词 舞蹈串烧节目主持词  舞蹈串烧节目应该怎么进行主持呢?以下是小编整理的舞蹈串烧节目主持词,欢迎参考阅...
元旦节目主持词 2023元旦节目主持词范文(通用16篇)  主持词是主持人在台上表演的灵魂之所在。随着中国在不断地进...
结婚典礼新郎父亲致辞 结婚典礼新郎父亲致辞(精选13篇)  在平平淡淡的学习、工作、生活中,大家对致辞都不陌生吧,致辞具有...
美剧经典台词摘选 美剧经典台词摘选  Men are not prisoners of fate, but priso...