LGBMRanker是一种用于排序任务的机器学习模型。它基于梯度提升决策树(GBDT)算法,通过对特征进行组合和筛选,可以学习到输入特征和目标排名之间的复杂非线性关系。
下面是一个LGBMRanker模型的简单示例,以训练和预测用户搜索结果的排序为例:
query_id,document_id,feature_1,feature_2, ..., feature_n, relevance
1,101,0.2,0.3, ..., 0.5, 3
1,102,0.1,0.4, ..., 0.4, 2
1,103,0.3,0.1, ..., 0.3, 1
...
2,201,0.2,0.3, ..., 0.6, 2
2,202,0.3,0.2, ..., 0.5, 1
2,203,0.1,0.4, ..., 0.4, 3
...
其中,每一行表示一个搜索结果,包括查询ID、文档ID、一些特征和相关性得分
import numpy as np
import lightgbm as lgb# load data from file
data = np.loadtxt("data.txt", delimiter=",")# convert query and document ids to integers
query_ids = data[:, 0].astype(int)
doc_ids = data[:, 1].astype(int)# extract features and relevance scores
features = data[:, 2:-1]
relevance = data[:, -1]# split data into train and test sets
train_idx = np.random.choice(len(query_ids), size=int(len(query_ids)*0.8), replace=False)
test_idx = np.setdiff1d(np.arange(len(query_ids)), train_idx)
train_data = lgb.Dataset(features[train_idx], label=relevance[train_idx], group_sizes=np.bincount(query_ids[train_idx]))
test_data = lgb.Dataset(features[test_idx], label=relevance[test_idx], group_sizes=np.bincount(query_ids[test_idx]))
在这个例子中,我们将80%的数据用于训练,20%用于测试。为了确保每个查询在训练集和测试集中都有足够的搜索结果,我们使用np.bincount()函数计算每个查询的搜索结果数量,并将它们传递给lightgbm的Dataset对象作为group_sizes参数。
# set up parameters for LGBMRanker
params = {"objective": "lambdarank","metric": "ndcg","ndcg_eval_at": [5, 10],"num_leaves": 31,"learning_rate": 0.05,"feature_fraction": 0.7,"bagging_fraction": 0.7,"bagging_freq": 5,"verbose": -1
}# train the model
model = lgb.train(params, train_data, num_boost_round=1000, valid_sets=[train_data, test_data], early_stopping_rounds=50)
在这个例子中,我们使用了Lambdarank作为损失函数,使用NDCG作为评估指标,并在前5和前10个搜索结果处计算NDCG。我们还使用了一些常见的LGBM模型参数,如num_leaves、learning_rate、feature_fraction和bagging_fraction等。
# prepare new query data
new_query = np.array([[0.1, 0.2, ..., 0.3], [0.2, 0.3, ..., 0.4], ...])# predict relevance scores for new queries
scores = model.predict(new_query)# rank documents by relevance score for each query
rankings = np.argsort(-scores)
在这个例子中,我们将新的查询特征存储在一个数组中,并使用model.predict()函数预测每个查询的相关性得分。然后,我们使用np.argsort()函数将文档按照得分从高到低排列,并将它们存储在rankings数组中。
希望这个示例能够帮助你了解如何使用LGBMRanker模型进行排序任务。当然,具体的实现方式还取决于你的具体需求和数据特点。
下一篇:Spark Join大小表