Python - Pandas - 数据分析(2)
创始人
2024-05-31 10:38:37
0

pandas数据分析

Pandas数据分析2

  • 前言
    • 常用的21种统计方法
      • describe():
      • numeric_only:
      • 偏度skewness:
        • 功能:
        • 含义:
        • 计算公式:
        • 演示:
      • 峰度值:
        • 用途:
        • 数值:
        • 计算公式:
        • 演示:
      • cov协方差
        • 计算公式:
        • 数值:
        • 操作对象:
        • 演示:
      • corr相关系数:
        • 计算公式:
        • 数值:
        • 操作对象:
        • 演示:
    • 常用的5种数据处理函数:
      • map:
        • 功能:
        • 字典map:
        • 函数map:
      • apply:
        • 功能:
        • apply匿名lambda:
        • apply内置函数
        • apply自己的函数:
      • groupy()
        • 不必having:
      • groupby + apply:
        • 自定义排序:
        • 获取每组最值:
      • agg:
        • 功能:
        • 字典指定内置函数:
        • groupby + agg:
      • lambda匿名函数:
      • lambda匿名函数数组:
    • 常用的两种文件操作:
      • 读写csv文件:
        • 读csv:
        • 写csv:
      • 读写excel文件:
        • 读excel:
        • 写excel:

前言

Vue框架:从项目学Vue
OJ算法系列:神机百炼 - 算法详解
Linux操作系统:风后奇门 - linux
C++11:通天箓 - C++11

一行检查是否下载过Pandas:
pip list
一行下载:
pip install pandas

常用的21种统计方法

函数功能
count统计非空值个数
max最大值
min最小值
sum求和
prod乘积
cumsum累和
cumprod累乘
cummax累积最大值
cummin累积最小值
mean平均值
std标准差
var方差
median算数中位数
abs绝对值
unique唯一值列表
nunique唯一值个数
value_counts唯一值及其频数
skew三阶偏度
kurt四阶峰度
corr相关系数矩阵
cov协方差矩阵

describe():

describe将显示所有数值型特征的count(),mean(),std(),max&min()等
import pandas as pd
dataframe = pd.DataFrame({'a' : [1, 2, 3, 4, 5],'b' : [1.1, 1.2, 1.3, 1.4, 1.5],'c' : ['a', 'b', 'c', 'd', 'e']
})
dataframe.describe()

describe()

numeric_only:

  • 以上很多运算都只支持对int和float运算,其他类型需要对+等运算符重载
  • 若此类运算未对运算符 或 运算函数重载,则可能自动忽略,也可能报错终止
  • 大多情况上述统计学函数都搭配slice切片使用
# 均值
print(DataFrame.mean())# 标准差
print(DataFrame.std())# 累和
print(DataFrame.cumsum())# 累乘
print(DataFrame.iloc[:, 0:2].cumprod())

cumsum

偏度skewness:

功能:

  • 用于描述数据的不对称性

含义:

  • skewness == 0:正态分布
  • skewness > 0:正偏差数值较大,数据右侧有很多极端值,整体分布右偏/正偏
  • skewness < 0:负偏差数值较大,数据左侧有很多极端值,整体分布左偏/负偏

计算公式:

  • skewness=E[(x−E(x))/(D(x))3]skewness = E[(x - E(x)) / (\sqrt{D(x)})^3]skewness=E[(x−E(x))/(D(x)​)3]

演示:

import numpy as np
dataframe = pd.DataFrame({'id' : np.arange(10),#等比数列:起点、终点、个数,幂'value' : np.logspace(1, 10, 10, base = 2),#等差数列:起点、终点、个数'weight' : np.linspace(1, 10, 10)           
})
print(dataframe)
#skew()>0,value右侧异常值比较多
print(dataframe.skew())

skew

  • 画图看看:
#挑选数值型特征
num_feats = dataframe.dtypes[dataframe.dtypes != 'object'].index
import matplotlib.pyplot as plt
plt.figure(figsize = (8, 8))#8inch * 8inch
fig, ax = plt.subplots(2, 2) 
for row in range(2):for col in range(2):if row*2+col > 2 :continuedata = dataframe[num_feats[row*2+col]]ax[row][col].plot(data.index, data.values)ax[row][col].set_title(f'{num_feats[row*2+col]}')
# 自动保持子图之间的正确间距。
fig.tight_layout()
plt.show()

skew

峰度值:

用途:

  • 描述某个变量所有取值分布形态陡缓程度的统计量,即数据分布的尖锐程度

数值:

  1. kurtosis == 0:陡缓程度和正态分布相同
  2. kurtosis > 0:比正态分布高峰陡峭,尖顶峰
  3. kurtosis < 0:比正态分布高峰平和,平顶峰

计算公式:

Kurtosis=E[(x−E(x))/(D(x))4]−3Kurtosis = E[(x - E(x)) / (\sqrt{D(x)})^4] - 3Kurtosis=E[(x−E(x))/(D(x)​)4]−3

演示:

  • 继续使用上组数据演示:
print(dataframe.kurt())

kurt

cov协方差

计算公式:

cov(X,Y)=E[(X−E[X])∗(Y−E[Y])],cov(X,Y)=E[ (X-E[X]) * (Y-E[Y]) ],cov(X,Y)=E[(X−E[X])∗(Y−E[Y])],

  • E[X]代表变量X的期望。
  • 从直观上来看,协方差表示的是两个变量总体误差的期望。
  • 如果其中一个大于自身的期望值时另外一个也大于自身的期望值,两个变量之间的协方差就
    是正值;
  • 如果其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
  • 如果X与Y是统计独立的,那么二者之间的协方差就是0

数值:

  • corr()返回相关系数,介于[-1, 1]
  • |-1| 和 |1| 表示线性相关
  • 正负号表示正负相关

操作对象:

  • 对于含有n个特征值的DataFrame,两两之间计算协方差,构成n*n的矩阵
  • 协方差矩阵中对角线上是方差,非对角线是协方差

演示:

  • 继续使用以上数据:
dataframe.cov()

cov

corr相关系数:

计算公式:

  • 基于cov协方差
    ρXY=Cov(X,Y)/[D(X)][D(Y)]ρXY = Cov(X,Y) / \sqrt{[D(X)]} \sqrt{[D(Y)}]ρXY=Cov(X,Y)/[D(X)]​[D(Y)​]

数值:

  • corr()计算介于[-1, 1]的相关系数
  • |-1| 和 |1| 表示线性相关
  • 正负号表示正负相关

操作对象:

  • 对于含有n个特征值的DataFrame,两两之间计算相关系数,构成n*n的矩阵
  • 相关系数矩阵中对角线上永远是1

演示:

  • 继续使用上述数据:
dataframe.corr()

corr

常用的5种数据处理函数:

map:

  • 示意图:
    map

功能:

  • 依据给定的函数 / 字典,将DataFrame / Series中一列内每个值转化为其他数值

字典map:

  • 为DataFrame / Series .map()方法,传递一个字典
#转型字典
gendermap = {'F' : 0, 'M' : 1}#数据
dataframe = pd.DataFrame({"name":['Jack', 'Alice', 'Lily', 'Mshis', 'Gdli', 'Agosh', 'Filu', 'Mack', 'Lucy', 'Pony'],"gender":['F', 'M', 'F', 'F', 'M', 'F', 'M', 'M', 'F', 'F'],"age":np.random.randint(15,50,10),"salary":np.random.randint(5,50,10),})#map方法
dataframe['gender'] = dataframe['gender'].map(gendermap)
print(dataframe)

dictionary_map

函数map:

  • 为DataFrame / Series 的.map()传递进入一个函数指针
dataframe = pd.DataFrame({"name":['Jack', 'Alice', 'Lily', 'Mshis', 'Gdli', 'Agosh', 'Filu', 'Mack', 'Lucy', 'Pony'],"gender":['F', 'M', 'F', 'F', 'M', 'F', 'M', 'M', 'F', 'F'],"age":np.random.randint(15,50,10),"salary":np.random.randint(5,50,10),})
print(dataframe)
print('*'*40)#转型函数
def gender_map(x) :gender = 0 if x == 'F' else 1return genderdataframe['gender'] = dataframe['gender'].map(gender_map)print(dataframe)

function_map

apply:

功能:

  • 遍历整个Series 和 DataFrame,对每个元素运行指定的函数,可以是自定义函数,也可以是上述的21种内置函数等等

apply匿名lambda:

df=pd.DataFrame({"name":['Jack', 'Alice', 'Lily', 'Mshis', 'Gdli', 'Agosh', 'Filu', 'Mack', 'Lucy', 'Pony'],"gender":['F', 'M', 'F', 'F', 'M', 'F', 'M', 'M', 'F', 'F'],"age":np.random.randint(15,50,10),"salary":np.random.randint(5,50,10),})print(df)
print('*'*40)
print(df[['age', 'salary']].apply(lambda x: x*2))

apply内置函数

  • 确定可以执行内置函数的是哪些列
#传入的函数也可以是pandas和python内置函数
print(df[['age', 'salary']].apply(max))
print('*'*30)
print(df[['age', 'salary']].apply(np.mean))

apply内置函数

apply自己的函数:

#按值遍历调用
def apply_func(row):a = row['name']b = row['gender']c = row['age']return f'name:{a},gender:{b}, age:{c}'#原地修改,增加一列all
df["all"] = df.apply(lambda row:apply_func(row), axis = 1)
#axis = 1,每次row为dataframe内的一行
print(df)

apply个人函数

groupy()

  • 功能同于Mysql中的groupby(),by参数可以传递入多个特征值
  • 传递入多个特征值时,分组是多个特征的排列组合,见下面的dfc.groupby(by=[‘gender’,‘age’])

不必having:

  • groupby()之后的操作都是针对每一组内部
import numpy as np
dfc=pd.DataFrame({"name":['Jack', 'Alice', 'Lily', 'Mshis', 'Gdli', 'Agosh', 'Filu', 'Mack', 'Lucy', 'Pony'],"gender":['F', 'M', 'F', 'F', 'M', 'F', 'M', 'M', 'F', 'F'],"age":np.random.randint(25,28,10),"salary":np.random.randint(5,50,10),})#划分成组后求对应组的和结果
print(dfc.groupby(by='gender').sum())
print("*"*25)
# groupby查传入的可以时多个属性
print(dfc.groupby(by=['gender','age']).sum())

groupby()

groupby + apply:

  • apply()传入参数:
    1. lambda
    2. 内置func()
    3. 个人所写函数
  • apply对象:
    经过groupby()之后的多个小组,也就是子DataFrame

自定义排序:

  • 对于每个子DataFrame执行sort_values()即可
df=pd.DataFrame({"name":['Jack', 'Alice', 'Lily', 'Mshis', 'Gdli', 'Agosh', 'Filu', 'Mack', 'Lucy', 'Pony'],"gender":['F', 'M', 'F', 'F', 'M', 'F', 'M', 'M', 'F', 'F'],"age":np.random.randint(25,28,10),"salary":np.random.randint(5,50,10),})
print(df)
print('*'*40)#此处的x也是一个dataframe
def group_staff_salary(x):df1 = x.sort_values(by = 'salary',ascending=True)
#ascending = True为从大到小的顺序,默认倒序return df1df.groupby('gender',as_index=True).apply(group_staff_salary)

groupby + apply = order

获取每组最值:

  • 限制每个子DataFrame返回对象即可
#只看每组最高工资:
df=pd.DataFrame({"name":['Jack', 'Alice', 'Lily', 'Mshis', 'Gdli', 'Agosh', 'Filu', 'Mack', 'Lucy', 'Pony'],"gender":['F', 'M', 'F', 'F', 'M', 'F', 'M', 'M', 'F', 'F'],"age":np.random.randint(25,28,10),"salary":np.random.randint(5,50,10),})
print(df)
print("*"*40)#此处的x也是一个dataframe
def group_staff_salary(x):df1 = x.sort_values(by = 'salary',ascending=True)return df1.iloc[-1, :]df.groupby('gender',as_index=True).apply(group_staff_salary)
  • 查询到男女两方最高工资者信息:
    groupby + apply = max

agg:

功能:

  • 同时为一组数据指定多个执行函数

字典指定内置函数:

  • 字典的key是DataFrame的特征,字典的value是要对特征值执行的函数
  • 要对字典执行的函数很多时,可以传递数组
# 1:字典:key为列,val为操作函数
df=pd.DataFrame({"name":['Jack', 'Alice', 'Lily', 'Mshis', 'Gdli', 'Agosh', 'Filu', 'Mack', 'Lucy', 'Pony'],"gender":['F', 'M', 'F', 'F', 'M', 'F', 'M', 'M', 'F', 'F'],"age":np.random.randint(25,28,10),"salary":np.random.randint(5,50,10),})df.agg({'age':['max'], 'salary':['mean', 'std']})
  • value作为行Index,key作为列Index
    字典指定agg

groupby + agg:

  • agg内许多函数的操作对象是groupby之后的子DataFrame的所有列:
df.groupby('gender').agg(['max', 'min', 'median'])
  • group作行Index,agg内函数作列index:
    groupby  + agg

lambda匿名函数:

  • agg内参数也可以是lambda表达式
df.groupby(['gender']).agg(lambda x: x.mean()-x.min())
  • groupby的特征值作为行Index,非by的特征值作为列Index
    groupby + agg + lambda

lambda匿名函数数组:

  • agg()内参数也可以是lambda表达式数组
df.groupby(['gender']).agg([lambda x: x.max()-x.min(), lambda x: x.mean()-x.min()])
  • 行Index为by的特征,列Index为lambda函数名
    groupby + agg + lambda

常用的两种文件操作:

读写csv文件:

读csv:

pd.read_csv('./test.csv')

写csv:

df.to_csv('./test.csv',index=False)
#不写行名

读写excel文件:

读excel:

pd.read_excel('./test.xlsx')

写excel:

df.to_excel('./test.xlsx',index=True)
#写行名

相关内容

热门资讯

常用商务英语口语   商务英语是以适应职场生活的语言要求为目的,内容涉及到商务活动的方方面面。下面是小编收集的常用商务...
六年级上册英语第一单元练习题   一、根据要求写单词。  1.dry(反义词)__________________  2.writ...
复活节英文怎么说 复活节英文怎么说?复活节的英语翻译是什么?复活节:Easter;"Easter,anniversar...
2008年北京奥运会主题曲 2008年北京奥运会(第29届夏季奥林匹克运动会),2008年8月8日到2008年8月24日在中华人...
英语道歉信 英语道歉信15篇  在日常生活中,道歉信的使用频率越来越高,通过道歉信,我们可以更好地解释事情发生的...
六年级英语专题训练(连词成句... 六年级英语专题训练(连词成句30题)  1. have,playhouse,many,I,toy,i...
上班迟到情况说明英语   每个人都或多或少的迟到过那么几次,因为各种原因,可能生病,可能因为交通堵车,可能是因为天气冷,有...
小学英语教学论文 小学英语教学论文范文  引导语:英语教育一直都是每个家长所器重的,那么有关小学英语教学论文要怎么写呢...
英语口语学习必看的方法技巧 英语口语学习必看的方法技巧如何才能说流利的英语? 说外语时,我们主要应做到四件事:理解、回答、提问、...
四级英语作文选:Birth ... 四级英语作文范文选:Birth controlSince the Chinese Governmen...
金融专业英语面试自我介绍 金融专业英语面试自我介绍3篇  金融专业的学生面试时,面试官要求用英语做自我介绍该怎么说。下面是小编...
我的李老师走了四年级英语日记... 我的李老师走了四年级英语日记带翻译  我上了五个学期的小学却换了六任老师,李老师是带我们班最长的语文...
小学三年级英语日记带翻译捡玉... 小学三年级英语日记带翻译捡玉米  今天,我和妈妈去外婆家,外婆家有刚剥的`玉米棒上带有玉米籽,好大的...
七年级英语优秀教学设计 七年级英语优秀教学设计  作为一位兢兢业业的人民教师,常常要写一份优秀的教学设计,教学设计是把教学原...
我的英语老师作文 我的英语老师作文(通用21篇)  在日常生活或是工作学习中,大家都有写作文的经历,对作文很是熟悉吧,...
英语老师教学经验总结 英语老师教学经验总结(通用19篇)  总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成...
初一英语暑假作业答案 初一英语暑假作业答案  英语练习一(基础训练)第一题1.D2.H3.E4.F5.I6.A7.J8.C...
大学生的英语演讲稿 大学生的英语演讲稿范文(精选10篇)  使用正确的写作思路书写演讲稿会更加事半功倍。在现实社会中,越...
VOA美国之音英语学习网址 VOA美国之音英语学习推荐网址 美国之音网站已经成为语言学习最重要的资源站点,在互联网上还有若干网站...
商务英语期末试卷 Part I Term Translation (20%)Section A: Translate ...