这里使用官方的yolov5.60进行训练,yolov5的好处就是使用起来便利,只要定义好数据集格式,加上硬件不差,基本上可以跑出来。这里以遥感图像目标检测为例子进行实战。
这里直接参考大佬们讲解,向大佬学习:
Yolov5 系列1— Yolo发展史以及Yolov5模型详解.
Yolov5 模型详解.
遥感图像数据集有很多,我们选择最轻量级的rsod数据集进行演示,当然也可以其他数据集,不过文件比较大,具体可参考:
遥感图像目标检测常用数据集及下载链接汇总.
里面附有RSOD数据集的下载链接:
https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-
数据集包含飞机,油箱,运动场和立交桥,以PASCAL VOC数据集的格式进行标注。
数据集包括4个文件夹,每个文件夹包含一种对象:
1.飞机数据集,446幅图像中的4993架飞机
2.操场,189副图像中的191个操场。
3.立交桥,176副图像中的180座立交桥。
4.油箱,165副图像中的1586个 油箱。
注意PASCAL VOC数据集的格式并不适合于yolov代码进行训练,我们必须进行一个转换和数据集分割(分为训练集合验证集),形成满足yolov训练的数据集格式。
将 RSOD 遥感图像数据集转为 PASCAL VOC 格式:
将 RSOD 遥感图像数据集转为 PASCAL VOC 格式.
将 PASCAL VOC 格式转为yolov数据格式,这里写了一个转换的函数:
def convert_annotation(image_name):in_file = open('./ANNOTATIONS/'+image_name[:-3]+'xml')out_file = open('./LABELS/'+image_name[:-3]+'txt','w')tree=ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):cls = obj.find('name').textif cls not in classes:print(cls)continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))bb = convert((w,h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
转化前:
转化后:
训练过程可参考这篇:
工业缺陷检测项目实战(二)——基于深度学习框架yolov5的钢铁表面缺陷检测
这里可以选用模型较大的yolov5m进行训练,以下是这些模型的对比:
训练完之后,训练结果:
效果还可以。
使用pyrhon pyqt进行实现,可以实现摄像头的实时检测,也可以上传图片检测:
使用python flask进行封装,实现上传图片,云检测(网页挂载到腾讯云阿里云),记录识别历史:
需要代码的私信我。
上一篇:react基础知识创建hell
下一篇: “三十六策,走是上计”的意思